Skip to main content
Log in

Silicone based polyurethane materials: a promising biocompatible elastomeric formulation for cardiovascular applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The biocompatibility of a new material for cardiovascular applications constituted by a poly(ether)urethane (PEtU) and a silicone [polydimethylsiloxane (PDMS)] was evaluated. The achieved material shows properties similar to both polyurethanes and silicones. The material was transformed into porous membranes by a spray-deposition technique. Since any material preparation and manufacturing procedure may introduce some toxicity, in vitro cytotoxicity screening tests were carried out. Human umbilical vein endothelial cells (HUVECs) and a mouse fibroblasts cell line (L929) were cultivated with extracts obtained from materials containing 10, 40 and 100% (w/w) of PDMS. The commercially available Estane 5714-F1® and Cardiothane 51® were used as controls. Extracts were incubated up to 72 hours with HUVECs and L929 cells. The cytotoxic effect was evaluated by light microscopy, cell viability (MTT reduction and neutral red uptake) and proliferation (5-bromo-2′-deoxyuridine incorporation) tests. In vivo studies were carried out using materials containing the same PDMS percentages as for in vitro experiments. The same commercial controls were used. Results obtained with cell culture studies agreed with those obtained in the in vivo experiments and showed that the material preparation and manufacturing procedure do not introduce any toxicity in the products at each PDMS concentration investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. LELAH, T. G. GRASEL, J. A. PIERCE and S.L. COOPER, J. Biomed. Mater. Res. 20 (1986) 433.

    Article  CAS  Google Scholar 

  2. R. W. HERGENROTHER, H. D. WABERS and S. L. COOPER, Biomaterials 14 (1993) 449.

    Article  CAS  Google Scholar 

  3. Y. WU, Q. ZHAO, J. M. ANDERSON, A. HILTNER, G. A. LODOEN and C. R. PAYET, J. Biomed. Mater. Res. 25 (1991) 725.

    CAS  Google Scholar 

  4. D. J. MARTIN, L. A. WARREN, P. A. GUNATILLAKE, S. J. MCCARTHY, G. F. MEIJS and K. SCHINDHELM, Biomaterials 21 (2000) 1021.

    Article  CAS  Google Scholar 

  5. D. F. WILLIAMS in Biomaterials Progress in Biomedical Engineering Proceedings of a Consensus Conference of the European Society for Biomaterials, Elsevier, Amsterdam, 1987.

  6. M. C. TANZI, M. RESNATI, M. G. LAMPUGNANI, R. ANOUCHINSKY, L. AMBROSIO, B. MAMBRITO and E. DEJANA, Clin. Mater. 12 (1993) 17.

    Article  CAS  Google Scholar 

  7. H. J. JOHNSON, S. J. NORTHUP, P. A. SEAGRAVES, P. J. GARVIN and R. F. WALLIN, J. Biomed. Mater. Res. 17 (1983) 571.

    Article  CAS  Google Scholar 

  8. H. J. JOHNSON, S. J. NORTHUP, P. A. SEAGRAVES, M. ATALLAH, P. J. GARVIN, L. LIN and T. D. DARBY, J. Biomed. Mater. Res. 19 (1985) 489.

    Article  CAS  Google Scholar 

  9. D. SGOURAS and R. DUNCAN, J. Mater. Sci. Mater. Med. 1 (1990) 61.

    Article  CAS  Google Scholar 

  10. T. RAE, in “Techniques of Biocompatibility Testing” (D. F. Williams, Boca Raton, Florida, 1986) p. 81.

    Google Scholar 

  11. G. SOLDANI, G. PANOL, H. F. SASKEN, M. B. GODDARD and P. M. GALLETTI, J. Mater. Sci. Mater. Med. 3 (1992) 106.

    CAS  Google Scholar 

  12. T. OKOSHI, H. CHEN, G. SOLDANI, P. M. GALLETTI and M. GODDARD, ASAIO J. 38 (1992) M201.

    CAS  Google Scholar 

  13. E. A. JAFFE, R. L. NACHMAN, C. G. BECHER and C. R. MINICK, J. Clin. Invest. 52 (1973) 2745.

    CAS  Google Scholar 

  14. J. A. PLUMB, R. MILROY and S. B. KAYE, Cancer Res. 15 (1989) 4435.

    Google Scholar 

  15. A. A. IGNATIUS and L. E. CLAES, Biomaterials 17 (1996) 831.

    Article  CAS  Google Scholar 

  16. E. BORENFREUND and J. PUERNER, Toxicol. Lett. 24 (1985) 119.

    Article  CAS  Google Scholar 

  17. C. R. PARISH and A. MULLBACHER, J. Immunol. Methods 58 (1983) 225.

    Article  CAS  Google Scholar 

  18. T. PORSTMANN, T. TERNYNCK and S. AVRAMEAS, J. Immunol. Methods 82 (1985) 169.

    Article  CAS  Google Scholar 

  19. P. L. HUONG, A. H. KOLK, T. A. EGGELTE, C. P. VERSTIJNEN, H. GILIS and J. T. HENDRIKS, J. Immunol. Methods 140 (1991) 243.

    Article  CAS  Google Scholar 

  20. C. NISHI, N. NAKAJIMA and Y. IKADA, J. Biomed. Mater. Res. 29 (1995) 829.

    Article  CAS  Google Scholar 

  21. G. ABATANGELO, R. BARBUCCI, P. BRUN and S. LAMPONI, Biomaterials 18 (1997) 1411.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briganti, E., Losi, P., Raffi, A. et al. Silicone based polyurethane materials: a promising biocompatible elastomeric formulation for cardiovascular applications. J Mater Sci: Mater Med 17, 259–266 (2006). https://doi.org/10.1007/s10856-006-7312-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-7312-4

Keywords

Navigation