Skip to main content
Log in

Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: Comparison with control hydrophobic one

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous PLGA/PVA scaffolds as hydrophilized PLGA scaffolds for tissue engineering applications were fabricated by a novel melt-molding particulate leaching method (non-solvent method). The prepared scaffolds exhibited highly porous and open-cellular pore structures with almost same surface and interior porosities (pore size, 200–300 μ m; porosity, about 90%). The in vitro degradation behavior of the PLGA and PLGA/PVA scaffolds was compared at 37C in PBS (pH 7.4) with and without the solution change everyday to see the effect of solution pH as well as scaffold hydrophilicity on the degradation behavior. The changes in dimension, molecular weight, mechanical properties (maximum load and modulus), and morphology of the scaffolds were examined with degradation time. The degradation behavior of the PLGA and PLGA/PVA scaffolds was further investigated in vivousing a rat model (subcutaneously implantation). It was observed that both PLGA and PLGA/PVA scaffolds in decreasing pH condition (PBS no change) showed faster degradation than those in constant pH condition (PBS change everyday), owing to the enhanced intramolecular depolymerization by the increment of chain hydrophilicity caused by carboxylate groups as well as the autocatalysis of carboxylic acids accumulated in the solution by the cleavage of PLGA backbone ester bonds. The scaffolds in vivo condition also showed faster degradation than those in vitro, probably due to the aid of foreign body giant cells or enzymes. The PLGA/PVA scaffold showed slightly faster degradation than the PLGA scaffold for both in vitro and in vivo conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. S. WU, in Encyclopedic Handbook of Biomaterials and Bioengineering, edited by D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser and E. R. Schwartz, (Marcel Dekker, New York, 1995) p. 1015.

    Google Scholar 

  2. A. G. MIKOS, G. SARAKINOS, S. M. LEITE, J. P. VACANTI and R. LANGER, Biomater. 14(1993) 323.

    Article  CAS  Google Scholar 

  3. A. G. MIKOS, A. J. THORSEN, L. A. GZERWONKA, Y. BAO, R. LANGER, D. N. WINSOLW and J. P. VACANTI, Polym. 35 (1994) 1068.

    Article  CAS  Google Scholar 

  4. C. SCHUGENS, V. MAQUET, C. GRANDFILS, R. JEROME and P. TEYSSIE, J. Biomed. Mater. Res. 30 (1996) 449.

    Article  CAS  Google Scholar 

  5. Y. S. NAM and T. G. PARK, ibid. 47 (1999) 8.

    CAS  Google Scholar 

  6. H. LO, S. KADIYALA, E. GUGGINO and K. W. LEONG, ibid. 30(1996) 475.

    CAS  Google Scholar 

  7. K. WHANG, C. H. THOMAS, K. E. HEALY and G. NUBER, Polym. 36 (1995) 837.

    Article  CAS  Google Scholar 

  8. L. D. HARRIS, B. S. KIM and D. J. MOONEY, J. Biomed. Mater. Res. 42 (1998) 396.

    Article  CAS  Google Scholar 

  9. Y. S. NAM, J. J. YOON and T. G. PARK, J. Biomed. Mater. Res. 53 (2000) 1.

    Article  CAS  Google Scholar 

  10. A. G. A. COOMBES and J. D. HECKMAN, Biomater. 13 (1992) 217.

    CAS  Google Scholar 

  11. A. G. MIKOS, Y. BAO, L. G. CIMA, D. E. INGBER, J. P. VACANTI and R. LANGER, J. Biomed. Mater. Res. 27 (1993) 183.

    Article  CAS  Google Scholar 

  12. A. PARK, B. WU and L. G. GRIFFITH, J. Biomater. Sci. Polym. Edn. 9 (1998) 89.

    CAS  Google Scholar 

  13. D. MOONEY, D. F. BALDWIN, N. P. SUH, J. P. VACANTI and R. LANGER, Biomater. 17 (1998) 1417.

    Google Scholar 

  14. S. H. OH, S. G. KANG, S. H. CHO, E. S. KIM and J. H. LEE, ibid. 24 (2003) 4011.

    CAS  Google Scholar 

  15. A. G. MIKOS, M. D. LYMAN, L. E. FREED and R. LANGER, ibid. 15 (1994) 55.

    CAS  Google Scholar 

  16. L. E. FREED, J. C. MARQUIS, A. NOHRIA, J. EMMANUAL, A. G. MIKOS and R. LANGER, J. Biomed. Mater. Res. 27 (1993) 11.

    Article  CAS  Google Scholar 

  17. L. E. FREED, G. VUNJAK-NOVAKOVIC, R. J. BIRON, D. B. EAGLES, D. C. LESNOY, S. K. BARLOW and R. LANGER, Biotechnology 12 (1994) 689.

    CAS  Google Scholar 

  18. S. LI, J. Biomed. Mater. Res. 48 (1999) 342.

    Article  CAS  Google Scholar 

  19. A. J. COURY, R. J. LEVY, C. R. MCMILLIN, Y. PATHAK, B. D. RATNER, F. J. SCHOEN, D. F. WILLIAMS and R. L. WILLIAMS, in Biomaterials Science: An Introduction to Materials in Medicine, B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons edited by, (Academic Press, New York, 1996) p. 243.

    Google Scholar 

  20. H. YOSHIMOTO, Y. M. SHIN, H. TERAI and J. P. VACANTI, Biomater. 24 (2003) 2077.

    Article  CAS  Google Scholar 

  21. C. G. PITT, Y. CHA, S. S. SHAH and K. J. ZHU, J. Control. Rel. 19 (1992) 189.

    CAS  Google Scholar 

  22. L. LU, S. J. PETER, M. D. LYMAN, H. L. LAI, S. M. LEITE, J. A. TAMADA, S. UYAMA, J. P. VACANTI, R. LANGER and A. G. MIKOS, Biomater. 21 (2000) 1837.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ho Lee.

Additional information

Author to whom all correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S.H., Kang, S.G. & Lee, J.H. Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: Comparison with control hydrophobic one. J Mater Sci: Mater Med 17, 131–137 (2006). https://doi.org/10.1007/s10856-006-6816-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-6816-2

Keywords

Navigation