Skip to main content
Log in

Controlling ion release from bioactive glass foam scaffolds with antibacterial properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive glass scaffolds have been produced, which meet many of the criteria for an ideal scaffold for bone tissue engineering applications, by foaming sol-gel derived bioactive glasses. The scaffolds have a hierarchical pore structure that is very similar to that of cancellous bone. The degradation products of bioactive glasses have been found to stimulate the genes in osteoblasts. This effect has been found to be dose dependent. The addition of silver ions to bioactive glasses has also been investigated to produce glasses with bactericidal properties. This paper discusses how changes in the hierarchical pore structure affect the dissolution of the glass and therefore its bioactivity and rate of ion delivery and demonstrates that silver containing bioactive glass foam scaffolds can be synthesised. It was found that the rate of release of Si and Ca ions was more rapid for pore structures with a larger modal pore diameter, although the effect of tailoring the textural porosity on the rate of ion release was more pronounced. Bioactive glass scaffolds, containing 2 mol% silver, released silver ions at a rate that was similar to that which has previously been found to be bactericidal but not high enough to be cytotoxic to bone cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. HENCH and J. M. POLAK, Science 295 (2002) 1014.

    Article  CAS  Google Scholar 

  2. J. E. DAVIES, “Bone Engineering”, (EM2 incorporated, Toronto, 2000).

  3. R. LANGER and J. P. VACANTI, Science 260 (1993) 920.

    Article  CAS  Google Scholar 

  4. H. OHGUSHI and A. I. CAPLAN, J. Biomed. Mater. Res. B. 48 (1999) 913.

    Article  CAS  Google Scholar 

  5. T. TAKEZAWA, Biomaterials 24 (2003) 2267.

    Article  CAS  Google Scholar 

  6. J. R. JONES, P. D. LEE and L. L. HENCH, Phil. Trans. R. Soc. A 364 (2006) 263.

    Article  CAS  Google Scholar 

  7. L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487.

    Article  CAS  Google Scholar 

  8. I. D. XYNOS, A. J. EDGAR, L. D. K. BUTTERY, L. L. HENCH and J. M. POLAK, J. Biomed. Mater. Res. 155 (2000) 151.

    Google Scholar 

  9. L. L. HENCH, R. J. SPLINTER, W. C. ALLEN and T. K. GREENLEE, J. Biomed. Mater. Res. 2 (1971) 117.

    Article  Google Scholar 

  10. L. L. HENCH, J. Mat. Sci. Mater. Med. This Issue

  11. H. YUAN, J. D. DE BRUIJN, X. ZHANG, C. A. VAN BLITTERSWIJK and K. DE GROOT J. Biomed, Mater. Res. 58 (2001) 270.

    Article  CAS  Google Scholar 

  12. L. L. HENCH and J. K. WEST, Chem. Rev. 90 (1990) 33.

    Article  CAS  Google Scholar 

  13. L.L. HENCH and W. VASCONCELOS, Ann. Rev. Mater. Sci. 20 (1990) 269.

  14. R. LI, A. E. CLARK and L. L. HENCH, J. Appl. Biomat. 2 (1991) 231.

    Article  CAS  Google Scholar 

  15. M. M. PEREIRA, A. E. CLARK and L. L. HENCH J. Biomed. Maters. Res. 28 (1994) 693.

    Article  CAS  Google Scholar 

  16. N. J. COLEMAN and L. L. HENCH, Cer. Int. 26 (2000) 171.

    Article  CAS  Google Scholar 

  17. P. SARAVANAPAVAN, J. R. JONES, R. S. PRYCE and L. L. HENCH, J. Biomed. Maters. Res. 66A (2003) 110.

    Article  CAS  Google Scholar 

  18. J. R. JONES and L. L. HENCH, J. Biomed. Maters. Res. 68B (2004) 36.

    Article  CAS  Google Scholar 

  19. P. SEPULVEDA, J. R. JONES and L. L. HENCH J. Biomed. Maters. Res. 61 (2002) 301.

    Article  CAS  Google Scholar 

  20. M. BELLANTONE, N. J. COLEMAN and L. L. HENCH, J. Biomed. Mater. Res. 51 (2000) 484.

    Article  CAS  Google Scholar 

  21. M. BELLANTONE, H. D. WILLIAMS and L. L. HENCH, Antim. Ag. Ch. (2002) 1940.

  22. P. SEPULVEDA, J. R. JONES and L. L. HENCH, J. Biomed. Maters. Res. 59 (2002) 340.

    Article  CAS  Google Scholar 

  23. J. E. GOUGH, J. R. JONES and L. L. HENCH, Biomaterials 25 (2004) 2039.

    Article  CAS  Google Scholar 

  24. J. R JONES and L. L. HENCH, J. Mat. Sci. 38 (2003) 3783.

    Article  Google Scholar 

  25. J. R JONES and L. L. HENCH, J. Biomed. Maters. Res. 68B (2004) 36.

    Article  Google Scholar 

  26. J. R. JONES, L. M. EHRENFRIED and L. L. HENCH, Biomaterials 27 (2006) 964.

    Article  CAS  Google Scholar 

  27. Implants for surgery–Hydroxyapatite–Part 1: Ceramic hydroxyapatite. BS ISO 13779-1:2000.

  28. J. R. JONES, P. SEPULVEDA and L. L.HENCH. J. Biomed. Mater. Res. 58B (2001) 720.

    Article  Google Scholar 

  29. S. R. STOCK, Int. Mat. Rev. 44 (1999) 141.

    Article  CAS  Google Scholar 

  30. R. ATWOOD, J. R. JONES, P. LEE and L. L. HENCH, Scripta Mat. 51 (2004) 1029.

    Article  CAS  Google Scholar 

  31. M. SHIRKHANZADEH and M. AZADEGAN, J. Mat. Sci. 9 (1998) 385.

    CAS  Google Scholar 

  32. PEREIRA, J. R. JONES, R. L.OREFICE and L. L. HENCH, J. Mat. Sci.: Mat. Med. 16 (2005) 1045.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian R. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, J.R., Ehrenfried, L.M., Saravanapavan, P. et al. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J Mater Sci: Mater Med 17, 989–996 (2006). https://doi.org/10.1007/s10856-006-0434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0434-x

Keywords

Navigation