Skip to main content

Advertisement

Log in

Porous-conductive chitosan scaffolds for tissue engineering II. in vitro and in vivo degradation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous-conductive chitosan scaffolds were fabricated by blending conductive polypyrrole (PPy) particles with chitosan solution and employing an improved phase separation method. In vitro and in vivo degradation behaviors of these scaffolds were investigated. In the case of in vitro degradation, an enzymatic degradation system was employed and lysozyme was used as a working enzyme. Meanwhile, the degradation products of scaffolds, glucosamine and N-acetyl-glucosamine, were also analyzed with a HPLC method. In vivo degradation of scaffolds was performed by subcutaneously implanting these scaffolds in rat for prescheduled time intervals. In the both cases, the weight-loss of scaffolds was monitored during the whole degradation process for evaluating the degradation of scaffolds. The changes in conductivity of scaffolds afterin vitro or in vivo degradation were also measured using a four-point technique. It was observed that the pore parameters of scaffolds themselves could significantly influence the degradation behaviors of scaffolds but the PPy content in the scaffolds seemed not to impart its effect to the degradation of scaffolds. Degradation dynamics of scaffolds and conductivity measurements indicated that these scaffolds shown fairly different behaviors in their in vitro and in vivo degradation process. According to the results obtained from in vitro and in vivo degradation of scaffolds and based on some requirements of practical tissue engineering application, it was suggested that the PPy content in the scaffold should be slightly higher than 3 wt.% but lower than 6 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. LANGER and J. P. VACANTI, Science 260 (1993) 920.

    CAS  Google Scholar 

  2. F. G. HEINEKEN and R. SKALAK, J. Biomech. Eng. 113 (1991) 111.

    Google Scholar 

  3. R. M. NEREM, Ann. Biomed. Eng. 19 (1991) 529.

    CAS  Google Scholar 

  4. K. T. PAIGE and C. A. VACANTI, Tissue Eng. 1 (1995) 97.

    CAS  Google Scholar 

  5. E. B. DENKBAS, M. SEYYAL and E. PISKIN, J. Membr. Sci. 172 (2000) 33.

    Article  CAS  Google Scholar 

  6. S. W. SHALABY, Biomedical Polymers, New York: Hanser Publishers, 1994.

    Google Scholar 

  7. L. LI, S. DING and C. ZHOU, J. Appl. Polym. Sci. 91 (2004) 274.

    CAS  Google Scholar 

  8. J. YANG, G. SHI, J. BEI, S. WANG, Y. CAO, Q. SHANG, G. YANG and W. WANG, J. Biomed. Mater. Res. 62 (2002) 438.

    CAS  Google Scholar 

  9. T. RATHKE and S. HUDSON, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C34 (1994) 375.

    CAS  Google Scholar 

  10. C. BRINE, P. SANDFORD and J. ZIKAKIS, Advances in Chitin and Chitosan, Elsevier Applied Science, New York, 1992.

  11. R. A. A. MUZZARELLI and M. G. PETER, Chitin Handbook, European Chitin Society, Italy: Grottammare, 1997.

    Google Scholar 

  12. G. BORCHARD, Adv. Drug Delivery Rev. 52 (2001) 145.

    Article  CAS  Google Scholar 

  13. S. V. MADIHALLY and H. M. T. MATTHEW, Biomaterials, 20 (1999) 1133.

    Article  CAS  Google Scholar 

  14. C. E. SCHMIDT, V. R. SHASTRI, J. P. VACANTI and R. LANGER, Proc. Natl. Acad. Sci. USA 94 (1997) 8948.

    CAS  Google Scholar 

  15. B. GARNER, A. GEORGEVICH, A.J. HODGSON, L. LIU and G.G. WALLACE, J. Biomed. Mater. Res. 44 (1999) 121.

    Article  CAS  Google Scholar 

  16. R. F. VALENTINI, T. G. VARGO, J. A. GARDELLA JR and P. AEBISCHER, Biomaterials 13 (1992) 193.

    Article  Google Scholar 

  17. A. KOTWAL and C.E. SCHMIDT, Biomaterials 22 (2001) 1055.

    Article  CAS  Google Scholar 

  18. E. DE GIGLIO, L. SABBATINI and P.G. ZAMBONIN, J. Biomater. Sci. Polym. Ed. 10 (1999) 845.

    CAS  Google Scholar 

  19. T. AOKI, M. TANINO, N. OGATA and K. KUMAKURA, Biomaterials. 17 (1996) 1971.

    Article  CAS  Google Scholar 

  20. J.Y. WONG, R. LANGER and D.E. INGBER, Proc. Natl. Acad. Sci. USA. 91 (1994) 3201.

    CAS  Google Scholar 

  21. R. L. WILLIAMS and P. J. DOHERTY, J. Mater. Sci. Mater. Med. 5 (1994) 429.

    Article  CAS  Google Scholar 

  22. E. KHOR and J. L. H. WHEY, Carbohydr. Polym. 26 (1995) 183.

    Article  CAS  Google Scholar 

  23. Y. LAM, K. S. CHOW and E. KHOR, J. Polym. Res. 6 (1999) 203.

    CAS  Google Scholar 

  24. MACHIDA, S. MIYATA and A. TECHAGUMPUCH, Synth. Met. 31 (1989) 311.

  25. A. MOHAMMADI, D. W. PAUL, O. INGANAS, J. O. NILSSON and I. LUNDSTORM, J. Polym. Sci. Polym. Phys. 32 (1994) 495.

    CAS  Google Scholar 

  26. F. YAN, G. XUE and M. ZHOU, J. Appl. Polym. Sci. 77 (2000) 135.

    Article  CAS  Google Scholar 

  27. Y. WAN, H. WU and D. WEN, Macromol. Biosci. 4 (2004) 882.

    Article  CAS  Google Scholar 

  28. S. B. RAO and C. P. SHARMA, J. Biomed. Mater. Res. 34 (1997) 21.

    Article  CAS  Google Scholar 

  29. J. N. SADDLER and M. H. PENNER, Enzymatic Degradation of Insoluble Carbohydrates, ACS Symposium Series 618, Washington: American Chemical Society, 1995.

    Google Scholar 

  30. R. A. A. MUZZARELLI, C. JEUNIAUX, and G. W. GOODAY, Chitin in Nature and Technology, New York: Plenum, 1986, p.385.

    Google Scholar 

  31. S. C. TAN, E. KHOR, T. K. TAN and S. M. WONG, Talanta 45 (1998) 713.

    Article  CAS  Google Scholar 

  32. Y. WAN, K. A. M. CREBER, B. PEPPLEY, and V. T. BUI, Polymer 44 (2003) 1057.

    CAS  Google Scholar 

  33. F. CHELLAT, M. TABRIZIAN, S. DUMIYRIU, E. CHORNET, C. RIVARD and L. YAHIA, J. Biomed. Mater. Res. 53 (2000) 592.

    Article  CAS  Google Scholar 

  34. Z. WANG, C. ROBERGE, L.H. DAO, Y. WAN, G. SHI, M. ROUABHIA, R. GUIDOIN and Z. ZHANG, J. Biomed. Mater. Res. 70A (2004) 28.

    Article  CAS  Google Scholar 

  35. Y. MAROIS, Z. ZHANG, M. VERT, L. BEAULIEU, R. W. LENZ and R. GUIDOIN, Tissue Eng. 5 (1999) 369.

    CAS  Google Scholar 

  36. X. JIANG, Y. MAROIS, A. TRAORE, D. TESSIRE, L. H. DAO, R. GUIDOIN and Z. ZHANG, Tissue Eng. 8 (2002) 635.

    Article  CAS  Google Scholar 

  37. Z. ZHANG, R. GUIDOIN M. W. KING, T. V. HOW, Y. MAROIS and G. LAROCHE, Biomaterials 16 (1995) 369.

    CAS  Google Scholar 

  38. Y. WAN, W. HUANG, Z. WANG, X. X. ZHU, Polymer 45 (2004) 71.

    Article  CAS  Google Scholar 

  39. F. MI, S. SHYU, Y. WU, S. LEE, J. SHYONG and R. HUANG, Biomaterials. 22 (2001) 165.

    Article  CAS  Google Scholar 

  40. K. TOMIHATA and Y. IKADA, Biomaterials 18 (1997) 567.

    CAS  Google Scholar 

  41. Y. SHIGEMASA, K. SAITO, H. SASHIWA and H. ASIMOTO, Int. J. Biol. Macromol. 16 (1994) 43.

    Article  CAS  Google Scholar 

  42. F. SHEN, Y.L. CUI, L. F. YANG, K. D. YAO, X. H. DONG, W. Y. JIA and H. D. SHI, Polym. Int. 49 (2000) 1596.

    Article  CAS  Google Scholar 

  43. Z. WANG, C. ROBERGE, Y. WAN, L.H. DAO, R. GUIDOIN. Z. ZHANG, J. Biomed. Mater. Res. 66A (2003) 738.

    CAS  Google Scholar 

  44. F. MI, H. SUNG, S. SHYU, C. SU and C. PENG, Polymer 44 (2003) 6521.

    Article  CAS  Google Scholar 

  45. M. THERRIEN, R. GUIDION, A. ADNOT and R. PAYNTER, Biomaterials 10 (1989) 517.

    Article  CAS  Google Scholar 

  46. R. PAYNTER, H. MARTZ and R. GUIDION, ibid. 8 (1987) 94.

    Article  CAS  Google Scholar 

  47. R. A. A. MUZZARELLI, M. M. BELMONTE, M. MILIANI, C. MUZZARELLI, F. GABBANELLI and G. BIAGINI, Carbohydr. Polym. 48 (2002) 15.

    Article  CAS  Google Scholar 

  48. J. M. KERNS, A. J. FAKHOURI, H. P. WEINRIB and J. A. FREEMAN, Neuroscience 40 (1991) 93.

    Article  CAS  Google Scholar 

  49. L. M. KOW and D. W. PFAFF, Brain. Res. 347 (1985) 1.

    Article  CAS  Google Scholar 

  50. G. SHI, M. ROUABHIA, Z. WANG, L. H. DAO and Z. ZHANG, Biomaterials 25 (2004) 2477.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Y., Yu, A., Wu, H. et al. Porous-conductive chitosan scaffolds for tissue engineering II. in vitro and in vivo degradation. J Mater Sci: Mater Med 16, 1017–1028 (2005). https://doi.org/10.1007/s10856-005-4756-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-4756-x

Keywords

Navigation