Skip to main content
Log in

Study of aliovalent modification on dielectric and ac conductivity properties in lead titanate nanoceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Substitution of aliovalent ions on Pb and Ti sites of ferroelectric lead titanate nanoceramics has been carried out by using a novel mechanical activation followed by a conventional solid-state reaction technique to modify the dielectric and electric properties. The Optimization of calcinations and sintering temperatures has been checked by thermal gravimetric analysis and repeated firing. High resolution X-ray diffractogram (HRXRD) analysis of some aspects of crystal structure showed that single phase compounds were formed exhibiting a tetragonal structure. The ferroelectric phase-transition of PLMT materials is studied using dielectric measurements. A shift in the transition temperature towards the lower-temperature side with increased doping concentration has been noticed. The electrical conductivity calculated from impedance data has been observed to increase as a function of Mn concentration. Conduction and charge carrier behaviors were studied based on study of frequency and temperature dependence of ac conductivity. The low temperature conductivity mechanism shows frequency dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.H. Mitchell Perovskites, Modern and Ancient (Ontario, Almaz Press, 2002)

  2. P.M.Woodward, Acta Crystallogr. B 53, 32 (1997)

    Google Scholar 

  3. C.J. Howard, H.T. Stokes, Acta Crystallogr.A 61, 93 (2005)

    Article  Google Scholar 

  4. Archana Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan, Physica B: Condens. Matter 405, 99 (2010)

  5. G.A.Rossetti, L.E.Cross, J.P.Cline, J. Mater. Sci. 30, 24 (1995)

    Google Scholar 

  6. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric ceramics (Acedmic press, London, 1971), pp. 207–236

    Google Scholar 

  7. G.H. Haerthing, J. Am Cerm. Soc. Bull 43, 875 (1964)

    Google Scholar 

  8. K. Keizer, A. Burggraat, J. Ferroelectrics 14, 671 (1976)

    Article  CAS  Google Scholar 

  9. M. Takahashi, Jpn. J. Appl. Phys. 10, 643 (1971)

    Google Scholar 

  10. S. Takahashi, M. Takahashi, Jpn. J. Appl. Phys. 11, 31 (1971)

    Article  Google Scholar 

  11. A. Shukla, R.N.P. Choudhary, A.K. Thakur, J Mat. Sci.: Mat. Elec. 20, 745 (2009)

    Article  CAS  Google Scholar 

  12. A. Udomporn, S. Ananta, Mater. Lett. 58, 1154 (2003)

    Article  Google Scholar 

  13. A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phy. Chem. Sol. 70, 1401 (2009)

    Article  CAS  Google Scholar 

  14. F.A. Cotton, G. Wilkinson, C.A. Wikinson, M. Bochmann, Advanced Inorganic Chemistry (New York, Wiley, 1999)

  15. A. Molak, M. Paluch, S. Pawlus, K. Limontko J, Z. Ujma, I. Gruszka, J of phys D: Appl Phys. 38, 450 (2005)

  16. C.J.F. Botcher, Theory of electronic polarization (Elservier, Amsterdam, 1952)

    Google Scholar 

  17. R.N.P. Choudhary, B.K. Choudhary, J. Mat. Sci. Lett. 9, 394 (1990)

    Article  CAS  Google Scholar 

  18. P. Venkateswarlu, A. Laha, S.B. Krupanidhi, Thin Solid Films 474, 1 (2005)

    Article  CAS  Google Scholar 

  19. A. Pelaiz-Barranco, Y. Gonzalez Abreu, R Lopez-Noda, J. Phys: Condens. Matter 20, 505208 (2008)

    Google Scholar 

  20. K. Okazaki, Am. Cerm. Soc. Bull 63, 1150 (1984)

    CAS  Google Scholar 

  21. R. Garg, A. Senyshyn, H. Boysen, R. Ranjan, J. Phys.: Condens. Matter 20, 505215 (2008)

    Google Scholar 

  22. A. Shukla, R.N.P. Choudhary, Physica B: Condens. Matter 405, 2508 (2010)

    Article  CAS  Google Scholar 

  23. A.P. Barranco, Y.G. Abreu, R.L. Noda, J. Phys: Condens. Matter 20, 505208 (2008)

    Google Scholar 

  24. S. Bhattachaeyya, S.S.N. Bharadwaja, S.B. Krupanidhi, J. Appl. Phys. 88, 4294 (2000)

    Article  Google Scholar 

  25. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric, London, 1996)

    Google Scholar 

  26. A.S. Nowick, B.S. Lim, Phys. Rev B. 63, 1841145 (2001)

    Article  Google Scholar 

  27. A. Mansingh, A. Dhar, J. Phys. D: Appl. Phys. 18, 2059 (1985)

  28. K.S. Rao, P.M. Krishna, D.M. Prasad, J.H. Lee, J.S. Kim, J. Alloy. Com. 464, 497 (2008)

    Google Scholar 

  29. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  30. D.M. Ginsberg (ed.), Physical properties of high temperature super conductors I & II (World Scientific, Singapore, 1989)

  31. R.M. Mehra, P.C. Mathur, A.K. Kathuria, Radhey Shyam Phy. Rev.B. 18, 5620 (1978)

    Google Scholar 

Download references

Acknowledgments

One of the authors (AS) acknowledges with thanks the financial support received from the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi for carrying out the research at the Department of Physics and Meteorology, Indian Institute of Technology (IIT), Kharagpur 721302, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A., Choudhary, R.N.P. Study of aliovalent modification on dielectric and ac conductivity properties in lead titanate nanoceramics. J Mater Sci: Mater Electron 22, 1222–1228 (2011). https://doi.org/10.1007/s10854-011-0289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0289-x

Keywords

Navigation