Skip to main content
Log in

Local bonding arrangements in amorphous Ge2Sb2Te5: the importance of Ge and Te bonding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Extended X-ray absorption fine structure (EXAFS) studies of as-deposited Ge2Sb2Te5 films yield Ge K edge spectra essentially the same as previously reported; however, these earlier studies assumed only Te nearest neighbors, but the comprehensive analysis of this paper indicates significant concentrations of both Ge–Ge and Ge–Te bonds. Average bond coordination and number of valence bonding constraints/atom have been determined from an extension of bond-constraint theory that includes broken bond-bending constraints for Ge–Ge bonds, and optical memory alloys on the Sb2Te3–GeTe tie-line ∼3.05 ± 0.05 bonding constraints/atom, consistent with formation of an intermediate phase. The fraction of threefold or over-coordinated Te increases from 7.1 to 25% along this tie-line, and the amorphous to crystalline optical transmissivity transition occurs over a narrow temperature range, <10 °C. Over-coordination and Te leads to formation of positively charged defects, which must be balanced by under-coordinated of negatively charged Sb or Ge defect bonding arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.R. Ovshinsky, Phys. Rev. Lett. 20, 1450 (1968)

    Article  Google Scholar 

  2. C. Peng, M. Mansuripur, Appl. Optics 43, 4367 (2004)

    Article  Google Scholar 

  3. D.E. Sayers, F.W. Lytle, E.A. Stern, Phys. Rev. B. 11, 4836 (1975)

    Article  Google Scholar 

  4. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nature Mater. 3, 703 (2004)

    Article  CAS  Google Scholar 

  5. Liu Bo, Ruan Hao, Gan Fu-Xi, Chin. Phys. 11, 3 (2002)

    Google Scholar 

  6. I. Friedrich, V. Weidenhof, S. Lenk, M. Wuttig, Thin Solid Films 389, 239-244 (2001)

    Article  CAS  Google Scholar 

  7. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, J. Appl. Phys. 69, 2849 (1991)

    Article  CAS  Google Scholar 

  8. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, H. Hashimoto, Thin Solid Films 370, 258–261 (2000)

    Article  CAS  Google Scholar 

  9. B. Lee, J.R. Abelson, S.G. Bishop, D Kang, B. Cheong, K. Kim, J. Appl. Phys. 97, 093509 (2005)

    Article  Google Scholar 

  10. S. Hudgens and B. Johnson, MRS Bulletin (1 Nov 2004)

  11. J.C. Phillips, J. NonCryst. Solids 34, 153 (1979)

    Article  CAS  Google Scholar 

  12. M. F. Thorpe, J. NonCryst. Solids 57, 355 (1983)

    Article  CAS  Google Scholar 

  13. Phase Transformations and Self-Organization in Electronic and Molecular Networks, ed. by J.C. Phillips and M.F. Thorpe (Kluwer Academic, Dordrecht /Plenum Publishers, New York, 2001) pp. 1–22

  14. B. Ravel, J. Synchrotron Rad. 12, 537 (2005)

    Article  CAS  Google Scholar 

  15. J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, T.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991)

    Article  CAS  Google Scholar 

  16. M. Newville, J. Synchrotron Rad. 8, 322 (2001)

    Article  CAS  Google Scholar 

  17. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd edn. (Interscience Publishers, New York, 1972), Chap. 3, p. 117 (Table 3.4)

  18. R.T. Sanderson, Chemical Bonds and Bond Energy, 2nd edn. (Academic, New York, 1976), Chap. 3, p. 60–63

  19. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, 1960), p. 511

  20. A. Feltz, Amorphe und glasartige anorganische Festkörper, (Akademi-Verlag, Berlin, 1983), p. 248

  21. J.L. LaGrange, Mécanique Analytique, Paris (1788)

  22. J.C. Maxwell, Philos. Mag. 27, 294–299 (1864)

    Google Scholar 

  23. D.J. Jacobs, M.F. Thorpe, Phys. Rev. Lett. 75, 22 (1995)

    Google Scholar 

  24. Xingwei Feng, W.J. Bresser, P. Boolchand, Phys. Rev. Lett. 78, 23 (1997)

    Article  Google Scholar 

  25. R. Kerner, J.C. Phillips, Solid State Commun. 117, 47 (2001)

    Article  Google Scholar 

  26. D. Baker, D.A. Baker, M.A. Paesler, G. Lucovsky, S.C. Agarwal, P.C. Taylor, Phys. Rev. Lett. Phys. Rev. Lett. 96, 25550 (2006)

    Google Scholar 

  27. M. Kastner, D. Adler, H. Fritzsche, Phys. Rev. Lett. 37, 1504 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work supported by the Air Force Research laboratory under grant no. F29601-03-01-0229 and by the National Science Foundation under grant no. DMR 0307594. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lucovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, D.A., Paesler, M.A. & Lucovsky, G. Local bonding arrangements in amorphous Ge2Sb2Te5: the importance of Ge and Te bonding. J Mater Sci: Mater Electron 18 (Suppl 1), 399–403 (2007). https://doi.org/10.1007/s10854-007-9233-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9233-5

Keywords

Navigation