Skip to main content
Log in

Electrical characterization of semiconductor materials and devices—review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconductor materials and devices continue to occupy a pre-eminent technological position because of their importance in building integrated electronic systems for wide ranging applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnostics and environmental monitoring. A key ingredient of this technological dominance has been the rapid advances in the quality and processing of materials—semiconductors, conductors and insulators—thus providing the complementary metal-oxide-semiconductor device technology with its important characteristics of negligible standby power dissipation, good input–output isolation, surface potential control and reliable operation. However, in assessing the material quality and device reliability, it is important to have non-destructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be rapidly determined. This article describes some of the more widely used and popular techniques that are used to determine these important parameters. The techniques presented in this paper range in complexity and requirements for test structures. It ranges from the simple current–voltage measurements, to the more sophisticated low-frequency noise and deep-level transient spectroscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. M.J. Deen, Electrical Characterization Techniques for Semiconductor–Silicon Dioxide Interfaces—A Review, Proceedings of the Sixth Symposium Silicon Nitride and Silicon Dioxide Thin Insulating Films, eds. R.E. Sah, M.J. Deen, D. Landheer, K.B. Sundaram, W.D. Brown and D. Misra, The 203rd Meeting of the Electrochemical Society Paris, France, pp. 3–21 (27 April–2 May 2003)

  2. Proceedings of the Symposium on Diagnostic Techniques for Semiconductor Materials and Devices, Proc. Volume 97-12, eds. P. Rai-Choudhury, J. Benton and D. Schroder (The Electrochemical Society Press, New Jersey, 1997)

  3. D. Schroder, Semiconductor Material and Device Characterization, Second Edition, (John Wiley & Sons, New York 1998)

    Google Scholar 

  4. W. Runyan, T. Shaffner, Semiconductor Measurements & Instrumentation, 2nd edn. (Mc Graw Hill, New York, 1997)

    Google Scholar 

  5. International Technology Roadmap for Semiconductors—ITRS 2005 Edition, http://www.itrs.net/Common/2005ITRS/Home2005.htm

  6. M. Jamal Deen, F. Pascal, Electrical Characterization of Semiconductor Materials and Devices, in Handbook of Electronic and Optolectronic Materials, ed. S. Kasap, P. Capper (Springer Science Handbook, 2006), 53 pp

  7. R. Pierret, Advance Semiconductor Fundamentals, Modular Series on Solid State Devices, vol 6 (Addison-Wesley, 1987)

  8. A.S. Holland, G.K. Reeves, Microelectronics Reliability 40, 965 (2000)

    Article  Google Scholar 

  9. L.J. van der Pauw, A method of measuring the specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Rep., vol 13, pp. 1–9 (Feb 1958)

  10. T. Noda, D. Lee, H. Shim, M. Sakuraba, T. Matsuura, J. Murota, Thin Solid Films, 380, 57 (2000)

    Article  CAS  Google Scholar 

  11. M. Newsam, A. Walton, M. Fallon, Numerical analysis of the effect of geometry on the performance of the Greek cross structure, in the Proc. of the 1996 Int. Conf. on Microelectronic Test Structures, March 1996, pp. 247–252, 1996

  12. J.H. Orchard-Webb, R. Coultier, A simple test structure for measuring substrate resistivity, Proc. IEEE Int. Conference on Microelectronic Test Structures, pp. 169–173 (March 1989)

  13. P. De Wolf, R. Stephenson, S. Biesemans, Ph. Jansen, G. Badenes, K. De Meyer, W. Vandervorst, Direct measurement of leff and channel profile in MOSFETs using 2-D carrier profiling techniques, International Electron Devices Meeting (IEDM) Technical Digest., pp. 559–562 (1998)

  14. J.D. Plummer, P.B. Griffin, Proc. IEEE, 89(3), 240 (March 2001)

    Article  Google Scholar 

  15. S. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley & Sons, New York, 1981)

    Google Scholar 

  16. W.M. Loh, S.E. Swirhun, T.A. Schreyer, R.M. Swanson, K.C. Saraswat, IEEE Trans. Electron Devices, 34(3), 512 (March 1987)

    Google Scholar 

  17. S. Zhang, M. Östling, H. Norström, T. Arnborg, IEEE Trans. Electron Devices, 41(8), 1414 (August 1994)

    Article  CAS  Google Scholar 

  18. Y. Qiu, Introduction to the Quantum Hall Effect, URL: http://www.pha.jhu.edu/∼qiuym/qhe (1997)

  19. E.H. Hall, Am. J. Math. 2, 287 (1879)

    Google Scholar 

  20. P. Elias, S. Hasenohrl, J. Fedor, V. Cambel, Sensors Actuators A 101, 150 (2002)

    Article  Google Scholar 

  21. A. Vandooren, S. Cristoloveanu, D. Flandre, J.P. Colinge, Solid-State Electron. 45, 1793 (2001)

    Article  CAS  Google Scholar 

  22. R.L. Petriz, Phys. Rev. 110, 1254 (1958)

    Article  Google Scholar 

  23. P. Terziyska, C. Blanc, J. Pernot, H. Peyre, S. Contreras, G. Bastide, J.L. Robert, J. Camassel, E. Morvan, C. Dua, C.C. Brylinski, Phys. Stat. Sol. (a) 195(1), 243 (2003)

    Article  CAS  Google Scholar 

  24. G. Rutsch, Robert P. Devaty, D.W. Langer, L.B. Rowland, Wolfgang J. Choyke, Mat. Sci. Forum 264–268, 517 (1998)

    Article  Google Scholar 

  25. P. Blood, J.W. Orton, The Electrical Characterization of Semiconductor: Majority Carriers and Electron States (Techniques of Physics, vol 14), (Academic Press, New York, 1992)

    Google Scholar 

  26. Q. Lu, M.R. Sardela, Jr., T.R. Bramblett, J.E. Greene, J. Appl. Phys. 80, 4458 (1996)

    Article  CAS  Google Scholar 

  27. D.-T. Lu, H. Ryssel, Curr. Appl. Phys. 1(3–5), 389 (2001)

    Article  Google Scholar 

  28. S. Wagner, C. Berglund, Rev. Sci. Instrum. 43(12), 1775 (1972)

    Article  CAS  Google Scholar 

  29. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, (John Wiley & Sons, New York, 1982)

    Google Scholar 

  30. Model 82-DOS Simultaneous C–V Instruction Manual, Keithley Instruments, Cleveland, Ohio (1988)

  31. W. Beadle, J. Tsai, R. Plummer, Quick Reference Manual for Silicon Integrated Circuit Technology, (John Wiley & Sons, New York, 1985)

    Google Scholar 

  32. J. Brews, J. Appl. Phys. 44(7), 3228 (1973)

    Article  Google Scholar 

  33. C.N. Berglund, IEEE Trans. Electr. Dev., ED-Vol. 13(10), 701 (1966)

    CAS  Google Scholar 

  34. M. Kuhn, Solid-State Electron. 13, 873 (1970)

    Article  Google Scholar 

  35. S. Witczak, J. Schuele, M. Gaitan, Solid-State Electron. 35, 345 (1992)

    Article  CAS  Google Scholar 

  36. L.M. Head, B. Le, T.M. Chen, L. Swiatkowski, The statistical distribution of 1/f2 noise in thin metal films under accelerated electromigration test conditions, Proceedings 30th Annual International Reliability Physics Symposium, pp. 228–231 (1992)

  37. S. An, M.J. Deen, IEEE Trans. Electron Devices 47(3), 537 (2000)

    Article  CAS  Google Scholar 

  38. S. An, M.J. Deen, A.S. Vetter, W.R. Clark, J.-P. Noel, F.R. Shepherd, IEEE J. Quantum Electron. 35(8), 1196 (1999)

    Article  CAS  Google Scholar 

  39. M.J. Deen, C. Quon, Characterization of hot-carrier effects in short channel NMOS devices using low frequency noise measurements, 7th Biennial European Conference—Insulating Films on Semiconductors (INFOS 91), (Liverpool, United Kingdom, 2–5 April, 1991), eds. W. Eccleston, M. Uren, IOP Publishing Ltd. U.K., pp. 295–298 (1991)

  40. Z. Celik-Butler, IEE Proc.-Circuits, Devices Syst. 149(1), 23 (2002)

    Article  Google Scholar 

  41. J. Chen, A. Lee, P. Fang, R. Solomon, T. Chan, P. Ko, C. Hu, Interface quality of SOI MOSFET’s reflected in noise and mobility Proceedings IEEE International SOI Conference, pp. 100–101 (1991)

  42. Proceedings of the 17th International Conference on Noise in Physical Systems and 1/f Fluctuations (ICNF 2003), Prague, Czech Republic, (18–22 August 2003)

  43. SPIE Proceedings on Noise in Devices and Circuits, vol 5113 (June 2003)

  44. Proceedings of International Conference on Unsolved Problems of Noise and Fluctuations, 1996, 1999 and 2002

  45. M.J. Deen, S.L. Rumyantsev, M. Schroter, J. Appl. Phys. 85(2), 1192 (1999)

    Article  CAS  Google Scholar 

  46. M. Sanden, O. Marinov, M. Jamal Deen, M. Ostling, IEEE Electron Device Lett. 22(5), 242 (2001)

    Article  CAS  Google Scholar 

  47. M. Sanden, O. Marinov, M. Jamal Deen, M. Ostling, IEEE Trans. Electron Devices 49(3), 514 (2002)

    Article  Google Scholar 

  48. M.J. Deen, J.I. Ilowski, P. Yang, J. Appl. Phys. 77(12), 6278 (1995)

    Article  CAS  Google Scholar 

  49. M.J. Deen, E. Simoen, IEE Proc.—Circuits, Devices Syst. 49(1), 40–50 (2002)

    Article  Google Scholar 

  50. IEE Proceedings—Circuits, Devices and Systems—Special Issue on Noise in Devices and Circuits, vol 151(2) (April 2004)

  51. M.J. Deen, O. Marinov, IEEE Trans. Electron Devices 49(3), 409 (2002)

    Article  Google Scholar 

  52. O. Marinov, M.J. Deen, J. Yu, G. Vamvounis, S. Holdcroft, W. Woods, Instability of the Noise Level in Polymer Field Effect Transistors with Non-Stationary Electrical Characteristics, Third International Conference on Unsolved Problems of Noise and Fluctuations (UPON 02), Washington, DC, 8 pp (2–7 September 2002)

  53. M. Marin, M.J. Deen M. de Murcia, P. Llinares, J.C. Vildeuil, IEE Proc.—Circuits, Devices Syst. 151(2), 95 (2004)

    Article  Google Scholar 

  54. A., Chandrakasan, Power Aware Wireless Microsensor Systems, Proceedings European Solid-State Circuits Conference (ESSCIRC 2002), pp. 47–54, Firenze, Italy (2002)

  55. M.J. Deen, M. H. Kazemeini, S. Naseh, Performance Characteristics of an Ultra-Low Power VCO, IEEE International Symposium on Circuits and Systems (ISCAS 2003), Bangkok, Thailand, pp. I697–I700 (May 25–28, 2003)

  56. M.H. Kazemeini , M.J. Deen, S. Naseh, Phase Noise in a Back-Gate Biased Low-Voltage VCO, IEEE International Symposium on Circuits and Systems (ISCAS 2003), Bangkok, Thailand, pp. I701–I704 (May 25–28, 2003)

  57. M. Jamal Deen, O. Marinov, Noise in Advanced Electronic Devices and Circuits, Proceedings of the 18th International Conference on Noise in Physical Systems and 1/f Fluctuations (ICNF 2005), Salamanca, Spain, pp. 3–12 (19–23 September 2005)

  58. F. Hooge, T. Kleinpenning, L. Vandamme, Repts. Progr. Phys., 44, 479 (1981)

    Article  Google Scholar 

  59. M.J. Deen, Mater. Sci. Eng. B B20, 207 (1993)

    Article  CAS  Google Scholar 

  60. C. Delseny, F. Pascal, S. Jarrix, G. Lecoy, J. Dangla, C. Dubon-Chevallier, Comparison of CBE and MOCVD GaAs p++ material quality by a low frequency noise study of TLM test structures, Proceedings of 7th ESREF, pp. 425–429, Bordeaux, France (3–6 Octobre 1995)

  61. F. Pascal, M. de Murcia, G. Lecoy, L.K.J. Vandamme, Solid-State Electron. 37(8), 1503 (1994)

    Article  CAS  Google Scholar 

  62. P. Mooney, J. Appl. Phys. 67, 3 (1990)

    Article  Google Scholar 

  63. M. de Murcia, F. Pascal, E. Richard, S. Contreras, Noise spectroscopy of deep levels in n+nn+ AlxGa1-xAs devices, Proc. of 13th International Conference on Noise in Physical System and 1/f noise, Palanga, Lithuania, pp. 247–250, (Mai 1995)

  64. J. Podlecki, L. Gouskov, F. Pascal, F. Pascal-Delannoy, A. Giani, Semicond. Sci. Technol. 11, 127 (1996)

    Article  CAS  Google Scholar 

  65. L. Chaar, A. van Rheenen, IEEE Trans. Instrum. Measur. 43, 658 (1994)

    Article  Google Scholar 

  66. C.-Y. Chen, C.-H. Kuan, IEEE Trans. Instrum. Measur., 49, 77 (2000)

    Article  Google Scholar 

  67. C. Ciofi, F. Crupi, C. Pace, G. Scandurra, IEEE Trans. Instrum. Measur., 52, 1533 (2003)

    Article  Google Scholar 

  68. M.J. Deen, O. Marinov, J. Yu, S. Holdcroft, W. Woods, IEEE Trans. Electron Devices 48(8), 1688 (2001)

    Article  CAS  Google Scholar 

  69. M.J. Deen, S.L. Rumyantsev, M. Schroter, J. Appl. Phys. 85(2), 1192 (1999)

    Article  CAS  Google Scholar 

  70. A. Ng, M.J. Deen, J. Ilowski, Can. J. Phys. (Special Issue for CSTC 1991), 70(10–11), 949 (1992)

    Google Scholar 

  71. P. Kolev, M.J. Deen, in Advances in Imaging & Electron Physics, vo1 109., ed. by P. Hawkes, (Academic Press, New York, 1999), pp. 1–161

    Google Scholar 

  72. P. McLarty, in Characterization Methods for Submicron MOSFETs, ed. by H. Haddara, (Kluwer Academic Publishers, Boston, 1996), pp. 109–126

    Google Scholar 

  73. P.V. Kolev, M.J. Deen, J. Appl. Phys. 83(2), 820 (1998)

    Article  CAS  Google Scholar 

  74. P.V. Kolev, M.J. Deen, T. Hardy, R. Murowinski, J. Electrochem. Soc. 145(9), 3258 (1998)

    Article  CAS  Google Scholar 

  75. P.V. Kolev, M. J. Deen, J. Kierstead, M. Citterio, IEEE Trans. on Electron Devices 46(1), 204 (1999)

    Article  CAS  Google Scholar 

  76. P.V. Kolev, M.J. Deen, N. Alberding, Rev. Sci. Instrum. 69(6), 2464 (1998)

    Article  CAS  Google Scholar 

  77. P.V. Kolev, M.J. Deen, Constant Resistance DLTS in Submicron MOSFETs, Proceedings of the Fourth Symposium on Low Temperature Electronics and High Temperature Superconductivity, Proceedings Volume 97-2, eds. C. Claeys, S.I. Raider, M.J. Deen, W.D. Brown, R.K. Kirschman, The Electrochemical Society Press, New Jersey, pp. 147–158 (1997)

Download references

Acknowledgements

The authors are very grateful to Drs. O.Marinov and D. Landheer for their careful review of the manuscript and their assistance. They are also grateful to several previous students and researchers whose collaborative research is discussed here. Finally, they are grateful to NSREC of Canada, the Canada Research Chair program and the CNRS of France for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Deen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deen, M.J., Pascal, F. Electrical characterization of semiconductor materials and devices—review. J Mater Sci: Mater Electron 17, 549–575 (2006). https://doi.org/10.1007/s10854-006-0001-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-0001-8

Keywords

Navigation