Skip to main content
Log in

Superabsorbent polymer composites: does clay always improve properties?

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Clay is frequently incorporated to many materials including superabsorbent polymers (SAPs) to improve their properties. Superior properties have been reported for the SAP composite (SAPC) materials comparing to their clay-free counterparts. However, study of the effect of clay on some of very important requirements of superabsorbents, particularly the residual monomer (RM), has been unnoticed in the academic literature. Here, we report preparation of a series of SAPCs via a conventional solution polymerization of partially neutralized acrylic acid in the presence of common MMT clay (Na-montmorillonite). The products were characterized by FTIR spectroscopy, differential scanning calorimetry, thermogravimetric, thermomechanical, and rheometrical analyses. The RM content of the samples was determined by high performance liquid chromatography. It was found that the clay had unfavorable effects on the crosslinking polymerization process. This fact was observed as declining mechanical strength of the SAPCs in both dried and swollen states, increased swelling capacity, decreased gel fraction, and increased RM content. For instance, RM of clay-free sample was 740 ppm which was continuously increased with level of the clay incorporated. It surprisingly reached to ~34,000 ppm at clay content of 12%. The undesirable function of clay was attributed to inactivation and barrier effects of clay incorporated to the polymerization medium. These unwanted effects were more pronounced at high clay content. However, overall thermostability of SAPCs was improved comparing to the non-composite counterpart. It was concluded that such conventionally prepared SAPCs, in spite of the previously reported claims, could not be suitable candidates for hygienic applications, particularly those prepared with high clay percentages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buchholz FL, Graham T (1998) Modern superabsorbent polymer technology. Wiley-VCH, New York, p 252

    Google Scholar 

  2. Zohuriaan-Mehr MJ, Kabiri K (2008) Iran Polym J 17:451

    CAS  Google Scholar 

  3. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) J Mater Sci 45:5711. doi:https://doi.org/10.1007/s10853-010-4780-1

    Article  CAS  Google Scholar 

  4. Kabiri K, Zohuriaan-Mehr MJ, Bouhendi H, Jamshidi A, Khan-Beigi FA (2009) J Appl Polym Sci 114:2533

    Article  CAS  Google Scholar 

  5. Kabiri K, Hesarian S, Zohuriaan-Mehr MJ, Jamshidi A, Boohendi H, Pourheravi MR, Hashemi SA, Khan-Beigi FA (2011) J Appl Polym Sci 120:2716

    Article  CAS  Google Scholar 

  6. Kabiri K, Zohuriaan-Mehr MJ (2004) Macromol Mater Eng 289:653

    Article  CAS  Google Scholar 

  7. Kabiri K, Zohuriaan-Mehr MJ (2003) Polym Adv Technol 14:438

    Article  CAS  Google Scholar 

  8. Yi JZ, Zhang LM (2007) Eur Polym J 43:3215

    Article  CAS  Google Scholar 

  9. Li A, Zhang JP, Wang AQ (2007) Bioresour Technol 98:327

    Article  CAS  Google Scholar 

  10. Pourjavadi A, Hosseinzadeh H, Mahdavinia GR, Zohuriaan-Mehr MJ (2007) Polym Polym Compos 15:43

    CAS  Google Scholar 

  11. Gao D (2003) Ph.D. Thesis, Freiburg University, Germany

  12. Su XF, Zhang G, Xu K, Wang JH, Song CL, Wang PX (2008) Polym Bull 60:69

    Article  CAS  Google Scholar 

  13. Lee WF, Yang LG (2004) J Appl Polym Sci 92:3422

    Article  CAS  Google Scholar 

  14. Santiago F, Mucientes AE, Osorio M, Poblete FJ (2006) Polym Int 55:843

    Article  CAS  Google Scholar 

  15. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2009) Polym Int 58:1252

    Article  CAS  Google Scholar 

  16. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2010) J Appl Polym Sci 116:2548

    CAS  Google Scholar 

  17. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Polym Compos 32:277

    Article  CAS  Google Scholar 

  18. Jamshidi A, Khan-Beigi FA, Kabiri K, Zohuriaan-Mehr MJ (2005) Polym Test 24:824

    Article  CAS  Google Scholar 

  19. Ramazani-Harandy MJ, Zohuriaan-Mehr MJ, Ershad-Langroudi A, Yousefi AA, Kabiri K (2006) Polym Test 25:470

    Article  CAS  Google Scholar 

  20. Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) J Polym Mater 20:17

    CAS  Google Scholar 

  21. Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Eur Polym J 39:1341

    Article  CAS  Google Scholar 

  22. Kabiri K, Omidian H, Zohuriaan-Mehr MJ (2003) Polym Int 52:1158

    Article  CAS  Google Scholar 

  23. Kabiri K, Zohuriaan-Mehr MJ (2004) Iran Polym J 13:423

    CAS  Google Scholar 

  24. Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A (2005) J Macromol Sci Pure Appl Chem 42:1655

    Article  CAS  Google Scholar 

  25. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2008) J Appl Polym Sci 110:3420

    Article  CAS  Google Scholar 

  26. Yavari-Gohar MR, Kabiri K, Zohuriaan-Mehr MJ, Hashemi SA (2010) J Polym Res 17:151

    Article  CAS  Google Scholar 

  27. Chen G, Liu S, Chen S, Qi Z (2001) Macromol Chem Phys 202:1189

    Article  CAS  Google Scholar 

  28. Ibrahim M, Nada A, Kamal DE (2005) Indian J Pure Appl Phys 43:911

    CAS  Google Scholar 

  29. Kim HS, Chen GX, Jin HJ, Yoon JS (2008) Colloids Surf A Physicochem Eng Aspects 313:56

    Article  CAS  Google Scholar 

  30. Lpoittevin B, Devalckenaere M, Patoustier N, Alexander M, Kubies D, Calberg C (2002) Polymer 43:4017

    Article  Google Scholar 

  31. Haraguchi K, Takenisa T, Fan S (2002) Macromolecules 35:10162

    Article  CAS  Google Scholar 

  32. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1

    Article  Google Scholar 

  33. Jiang H, Su W, Mather PT, Bunning TJ (1999) Polymer 40:4593

    Article  CAS  Google Scholar 

  34. Chan CK, Chu IM (2001) Polymer 42:6089

    Article  CAS  Google Scholar 

  35. Li L, Hsieh YL (2005) Nanotechnology 16:2852

    Article  CAS  Google Scholar 

  36. Huang Y, Lu J, Xiao C (2007) Polym Degrad Stab 92:1072

    Article  CAS  Google Scholar 

  37. Kabiri K, Azizi A, Zohuriaan-Mehr MJ, Bagheri Marandi G, Bouhendi H (2011) J Appl Polym Sci 119:2759

    Article  CAS  Google Scholar 

  38. Yen MH, Lin KF (2009) J Polym Sci Part B Poly Phys 47:524

    Article  CAS  Google Scholar 

  39. Ren Q, Shi TJ, Wang HL, Zhou YB, Zhai LF (2003) J Funct Polym (a Chinese Journal). doi: ISSN:1008-9357.0.2003-04-007

  40. Liu PS, Li L, Zhou NL, Zhang J, Wei SH, Shen J (2006) J Appl Polym Sci 102:5725

    Article  CAS  Google Scholar 

  41. Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2009) J Appl Polym Sci 113:3676

    Article  CAS  Google Scholar 

  42. Pourjavadi A, Kheirabadi M, Zohuriaan-Mehr MJ, Kabiri K (2009) J Appl Polym Sci 114:3542

    Article  CAS  Google Scholar 

  43. Darvishi Z, Kabiri K, Zohuriaan-Mehr MJ, Morsali A (2011) J Appl Polym Sci 120:3453

    Article  CAS  Google Scholar 

  44. Wu JH, Lin JM, Li GQ, Wei CR (2001) Polym Int 50:1050

    Article  CAS  Google Scholar 

  45. Wu JH, Wei YL, Lin HM, Lin SB (2003) Polymer 44:6513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kabiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabiri, K., Hesarian, S., Zohuriaan-Mehr, M.J. et al. Superabsorbent polymer composites: does clay always improve properties?. J Mater Sci 46, 6718–6725 (2011). https://doi.org/10.1007/s10853-011-5627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5627-0

Keywords

Navigation