Skip to main content

Advertisement

Log in

First-principles study of structure, vacancy formation, and strength of bcc Fe/V4C3 interface

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Voids are representative of the damage process in both creep and ductile fractures. Although the matrix/precipitate interface has been considered the preferential nucleation site for voids, the relationship between the atomic structure of this interface and the nucleation mechanism of a void has never been sufficiently investigated. In this study, the bcc Fe/V4C3 interface is selected as a model interface between a matrix and precipitate. The vacancy formation energy and intrinsic mechanical strength at this interface are investigated using a first-principles calculation because they should be related with the nucleation of creep and ductile voids, respectively. Within the considered interface, the Fe vacancy is found to be dominant. When the Baker–Nutting orientation relationship is satisfied at the interface, the calculated intrinsic mechanical strength of the interface is 23.8 GPa. However, when the geometric coherence at the interface is low as compared to that of the Baker–Nutting orientation relationship, it is found that the interfacial mechanical strength is significantly weakened. At each interface, it is found that the back-bond of the interface determined the interfacial strength because of the strongly bonded Fe–C on the interface. The nucleation mechanism of a void at the matrix/precipitate interface is discussed based on the present findings. It is suggested that local decohesion at the matrix/precipitate interface should be the origin of the nucleation of a ductile void.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kassner ME, Hayes TA (2003) Int J Plast 19:1715

    Article  Google Scholar 

  2. Dobrzanski J (2004) J Mater Process Technol 157–158:297

    Article  Google Scholar 

  3. Wahab AA, Kral MV (2005) Mater Sci Eng A 412:222

    Article  Google Scholar 

  4. Wahab AA, Hutchinson CR, Kral MV (2006) Scr Mater 55:69

    Article  CAS  Google Scholar 

  5. Kim KJ, Hong HU, Min KS, Nam SW (2004) Mater Sci Eng A 387–389:531

    Google Scholar 

  6. Sarwar M, Priestner R (1996) J Mater Sci 31:2091. doi:10.1007/BF00356631

    Article  CAS  Google Scholar 

  7. Das SK, Chatterjee S, Tarafder S (2009) J Mater Sci 44:1094. doi:10.1007/s10853-008-3106-z

    Article  CAS  Google Scholar 

  8. Erdogan M (2002) J Mater Sci 37:3623. doi:10.1023/A:1016548922555

    Article  CAS  Google Scholar 

  9. Oh YJ, Lee BS, Kwon SC, Hong JH (1999) J Mater Sci 34:4751. doi:10.1023/A:1004630904296

    Article  CAS  Google Scholar 

  10. Ogata S, Umeno Y, Kohyama M (2010) Model Simul Mater Sci Eng 17:013001

    Article  Google Scholar 

  11. Mizuno M, Tanaka I, Adachi H (1993) Acta Mater 46:1637

    Article  Google Scholar 

  12. Shishidou T, Lee JH, Zhao YJ, Freeman AJ (2003) J Appl Phys 93:6876

    Article  CAS  Google Scholar 

  13. Arya A, Carter EA (2003) J Chem Phys 118:8982

    Article  CAS  Google Scholar 

  14. Lee JH, Shishidou T, Zhao YJ, Freeman AJ, Olson GB (2005) Philos Mag 85:3683

    Article  CAS  Google Scholar 

  15. Arya A, Carter EA (2004) Surf Sci 560:103

    Article  CAS  Google Scholar 

  16. Tingaud D, Maugis P (2010) Comput Mater Sci 49:60

    Article  CAS  Google Scholar 

  17. Cao J, Yong Q, Liu Q, Sun X (2007) J Mater Sci 42:10080. doi:10.1007/s10853-007-2000-4

    Article  CAS  Google Scholar 

  18. Cabibo M, Fabrizi A, Merlin M, Garagnani GL (2008) J Mater Sci 43:6857. doi:10.1007/s10853-008-3000-8

    Article  Google Scholar 

  19. Babu NK, Suresh MR, Sinha PP, Sarma DS (2006) J Mater Sci 41:2971. doi:10.1007/s10853-006-6718-1

    Article  CAS  Google Scholar 

  20. Boniszewski T, Eaton NF (1969) Met Sci 3:103

    Article  Google Scholar 

  21. Nakamura K, Ogata T (2011) J Soc Mater Sci 60:102

    Article  CAS  Google Scholar 

  22. Emmons GH, Williams WS (1983) J Mater Sci 18:2589. doi:10.1007/BF00547575

    Article  CAS  Google Scholar 

  23. Locci IE, Michal GM (1988) Metall Mater Trans A 20:237

    Google Scholar 

  24. Maropoulous S, Karagiannis S, Ridley N (2007) J Mater Sci 42:1309. doi:10.1007/s10853-006-1191-4

    Article  Google Scholar 

  25. Tsuchida Y, Inoue T, Suzuki T (2004) Int J Press Vessel Pip 81:191

    Article  CAS  Google Scholar 

  26. Baker RG, Nutting J (1959) Iron Steel Inst 64:1

    CAS  Google Scholar 

  27. Nishida T, Tanino M (1965) J Jpn Inst Met 29:728

    CAS  Google Scholar 

  28. Senior BA (1988) Mater Sci Eng A 103:263

    Article  Google Scholar 

  29. Yamasaki S, Bhadeshia HKDH (2003) Mater Sci Technol 19:1335

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  33. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  34. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  35. Zhang J, Guyot F (1999) Phys Chem Min 26:206

    Article  CAS  Google Scholar 

  36. James WJ, Straumanis ME (1960) J Electrochem Soc 107:69

    Google Scholar 

  37. Liu H, Zhu J, Liu Y, Lai Z (2008) Mater Lett 62:3084

    Article  CAS  Google Scholar 

  38. Momma K, Izumi F (2008) J Appl Crystallogr 41:653

    Article  CAS  Google Scholar 

  39. Ikuhara Y, Pirouz P (1996) Mater Sci Forum 207–209:121

    Article  Google Scholar 

  40. Ikuhara Y, Sugawara Y, Tanaka I, Pirouz P (1997) Interface Sci 5:5

    Article  CAS  Google Scholar 

  41. Ikuhara Y, Pirouz P (1993) Ultramicroscopy 52:421

    Article  CAS  Google Scholar 

  42. Ikuhara Y, Pirouz P, Heuer AH, Yadavalli S, Flynn CP (1994) Philos Mag A 70:75

    Article  CAS  Google Scholar 

  43. Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y (2003) Sci Technol Adv Mater 4:575

    Article  CAS  Google Scholar 

  44. Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y (2004) Mater Trans 45:2137

    Article  CAS  Google Scholar 

  45. Raj R, Ashby MF (1975) Acta Metall 23:653

    Article  Google Scholar 

  46. Häglund J, Guillermet AF, Grimvall G, Körling M (1993) Phys Rev B 48:11685

    Article  Google Scholar 

  47. Hartford J (2000) Phys Rev B 61:2221

    Article  CAS  Google Scholar 

  48. Matsunaga K, Sasaki T, Shibata N, Mizoguchi T, Yamamoto T, Ikuhara Y (2006) Phys Rev B 74:125423

    Article  Google Scholar 

  49. Peng P, Jin ZH, Yang R, Hu ZQ (2004) J Mater Sci 39:3957. doi:10.1023/B:JMSC.0000031477.24789.93

    Article  CAS  Google Scholar 

  50. Voter AF, Montalenti F, Germann TC (2002) Ann Rev Mater Res 32:321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, K., Ohnuma, T. & Ogata, T. First-principles study of structure, vacancy formation, and strength of bcc Fe/V4C3 interface. J Mater Sci 46, 4206–4215 (2011). https://doi.org/10.1007/s10853-011-5426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5426-7

Keywords

Navigation