Skip to main content
Log in

AFM analysis of the surface of nanoporous membranes: application to the nanofiltration of potassium clavulanate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study presents the structural characterization of the surface of four commercial nanofiltration membranes: NF90 (polyamide) and NF (polypiperazine amide) from FilmtecTM and NP010 and NP030 (polysulfone) from Microdyn Nadir®, by Atomic Force Microscopy (AFM). These membranes have been studied before and after undergoing a filtration process with potassium clavulanate. The fast Fourier filtering of AFM images with very high magnification (40 × 40 nm) has allowed identifying the pore size distribution and geometry of the pores on the surface of the membrane before their use. Images between 0.5 × 0.5 and 10 × 10 μm2 have allowed the study of the surface roughness of the samples before and after being used to filtrate potassium clavulanate solutions. The results of roughness and power spectral fractal dimension along with the skewness and kurtosis of the height distribution have been analyzed in terms of pore size, hydraulic permeability, and the adsorption of clavulanate for the different samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu Arabi M (2004) Desalination 170:281

    Article  CAS  Google Scholar 

  2. Bowen WR, Mohammad AW, Hilal N (1997) J Membr Sci 126:91

    Article  CAS  Google Scholar 

  3. Mohammad AW, Hilal N, Seman MNA (2005) J Appl Polym Sci 96:605

    Article  CAS  Google Scholar 

  4. Bargeman G, Vollenbroek JM, Straatsma J, Schroën CGPH, Boom RM (2005) J Membr Sci 247:11

    Article  CAS  Google Scholar 

  5. Bowen WR, Doneva TA (2000) J Colloid Interface Sci 229:544

    Article  Google Scholar 

  6. Otero JA, Mazarrasa O, Villasante J, Silva V, Prádanos P, Calvo JI, Hernández A (2008) J Membr Sci 309:17

    Article  CAS  Google Scholar 

  7. Singh S, Khulbe KC, Matsuura T, Ramamurthy P (1998) J Membr Sci 142:111

    Article  CAS  Google Scholar 

  8. Prádanos P, Rodriguez ML, Calvo JI, Hernández A, Tejerina F, de Saja JA (1996) J Membr Sci 117:291

    Article  Google Scholar 

  9. Ochoa NA, Prádanos P, Palacio L, Pagliero C, Marchese J, Hernández A (2001) J Membr Sci 187:227

    Article  CAS  Google Scholar 

  10. Koyuncu I, Brant J, Lüttge A, Wiesner MR (2006) J Membr Sci 278:410

    Article  CAS  Google Scholar 

  11. Wong PCY, Kwon Y-N, Criddle CS (2009) J Membr Sci 340:117

    Article  CAS  Google Scholar 

  12. Schäfer AI, Fane AG, Waite TD (2000) Desalination 131:215

    Article  Google Scholar 

  13. Vrijenhoek EM, Hong S, Elimelech M (2001) J Membr Sci 188:115

    Article  CAS  Google Scholar 

  14. Koros WJ, Ma YH, Shimidzu T (1996) J Membr Sci 120:149

    Article  CAS  Google Scholar 

  15. Nghiem LD, Vogel D, Khan S (2008) Water Res 42:4049

    Article  CAS  Google Scholar 

  16. Bhattacharyya D, Hestekin J, Shan D, Ritchie S (2002) J Chin Inst Chem Eng 33:61

    CAS  Google Scholar 

  17. Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) Environ Prog 22:46

    Article  Google Scholar 

  18. Koyuncu I, Turan M, Topacik D, Ates A (2000) Water Sci Technol 41:213

    CAS  Google Scholar 

  19. Van der Bruggen B, Kim JH, DiGiano FA, Geens J, Vandecasteele C (2004) Sep Purif Technol 36:203

    Article  Google Scholar 

  20. Vrouwenvelder JS, Kappelhof JWNM, Heijman SGJ, Schippers JC, Van der Kooij D (2003) Desalination 157:361

    Article  CAS  Google Scholar 

  21. Tarabara VV, Koyuncu I, Wiesner MR (2004) J Membr Sci 241:65

    Article  CAS  Google Scholar 

  22. Van der Bruggen B, Vandecasteele C (2001) Environ Sci Technol 35:3535

    Article  Google Scholar 

  23. Van der Bruggen B, Braeken L, Vandecasteele C (2002) Desalination 147:281

    Article  Google Scholar 

  24. Wyart Y, Georges G, Deumié C, Amra C, Moulin P (2008) J Membr Sci 315:82

    Article  CAS  Google Scholar 

  25. Elimelech M, Zhu X, Childress AE, Hong S (1997) J Membr Sci 127:101

    Article  CAS  Google Scholar 

  26. Sheldon JM (1991) J Membr Sci 62:75

    Article  CAS  Google Scholar 

  27. Bessières A, Meireles M, Coratger R, Beauvillain J, Sanchez V (1996) J Membr Sci 109:271

    Article  Google Scholar 

  28. Wei Q, Wang D (2003) Mater Lett 57:2015

    Article  CAS  Google Scholar 

  29. Bowen WR, Hilal N, Lovitt RW, Willians PM (1996) J Membr Sci 110:229

    Article  CAS  Google Scholar 

  30. Bowen WR, Hilal N, Lovitt RW, Willians PM (1996) J Membr Sci 110:233

    Article  CAS  Google Scholar 

  31. Hilal N, Bowen WR (2002) Desalination 150:289

    Article  CAS  Google Scholar 

  32. Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW (2005) Desalination 177:187

    Article  CAS  Google Scholar 

  33. Boussu K, Van der Bruggen B, Volodin A, Snauwaert J, Van Haesendock C, Vancasteele C (2005) J Colloid Interface Sci 286:632

    Article  CAS  Google Scholar 

  34. Boussu K, Van der Bruggen B, Volodin A, Van Haesendonck C, Delcour JA, Van der Meeren P, Vandecasteele C (2006) Desalination 191:245

    Article  CAS  Google Scholar 

  35. Lu Y, Suzuki T, Zhang W, Moore JS, Mariñas BJ (2007) Chem Mater 12:3194

    Article  Google Scholar 

  36. Boussu K, Vandecasteele C, Van der Bruggen B (2008) J Membr Sci 310:51

    Article  CAS  Google Scholar 

  37. El-Said WH, Yea C-H, Jung M, Kim H, Choi J-W (2010) Ultramicroscopy 110:676

    Article  CAS  Google Scholar 

  38. Jaafar M, Navas D, Hernández-Vélez M, Balñdonedo JL, Vázquez M, Asenjo A (2009) Surf Sci 603:3155

    Article  CAS  Google Scholar 

  39. Popa AM, Angeloni S, Bürgi T, Hubbell JA, Heinzelmann H, Pugin R (2010) Langmuir 26:15356

    Article  CAS  Google Scholar 

  40. De-Lima LC, De-Macedo MMG, De-Alburquerque M, De-Alburquerque M, Simão RA (2009) Nano 4:157

    Article  CAS  Google Scholar 

  41. Howarth TT, Brown AG, King TJ (1976) J Chem Soc, Chem Commun 7:266

    Article  Google Scholar 

  42. Vandamme EJ (1984) Clavulanic acid: properties, biosynthesis and fermentation (biotechnology of industrial antibiotics 22). Marcel Dekker, New York

    Google Scholar 

  43. Bersanetti PA, Almeida RMRG, Barboza M, Araújo MLGC, Hokka CO (2005) Biochem Eng J 23:31

    Article  CAS  Google Scholar 

  44. Almeida RMRG, Barboza M, Hokka CO (2003) Appl Biochem Biotechnol 108:867

    Article  Google Scholar 

  45. Bowen WR, Welfoot JS (2002) Desalination 147:197

    Article  CAS  Google Scholar 

  46. Calvimontes A, Stamm M, Dutschk V (2009) Tenside Surfact Det 46:368

    CAS  Google Scholar 

  47. Nghiem LD, Shafer AI, Elimelech M (2005) Sep Sci Technol 40:2633

    Article  CAS  Google Scholar 

  48. López-Muñoz MJ, Sotto A, Arsuaga JM, Van der Bruggen B (2009) Sep Purif Technol 66:194

    Article  Google Scholar 

  49. Giessibl FJ (2003) Rev Mod Phys 75:949

    Article  CAS  Google Scholar 

  50. Walsh CJ, Leistner AJ, Oreb BF (1999) Appl Opt 38:4790

    Article  CAS  Google Scholar 

  51. Church EL (1988) Appl Opt 27:1518

    Article  CAS  Google Scholar 

  52. Deumié C, Richier R, Dumas P, Amra C (1996) Appl Opt 35:5583

    Article  Google Scholar 

  53. Ruppe C, Duparré A (1996) Thin Solid Films 288:8

    Article  CAS  Google Scholar 

  54. Mendez-Vilas A, Bruque JM, González-Martín ML (2007) Ultramicroscopy 1007:617

    Article  Google Scholar 

  55. Wesolowska K, Koter S, Bodzek M (2004) Desalination 162:137

    Article  CAS  Google Scholar 

  56. Montalvillo M, Silva V, Palacio L, Calvo JI, Hernández A, Pradanos P (2011) J Phys Chem (submitted)

  57. Macanás J, Palacio L, Prádanos P, Hernández A, Muñoz M (2006) Appl Phys A Mater Sci Process 84:277

    Article  Google Scholar 

  58. Yagali-Quintanilla V, Sadmani A, McConville M, Kennedy M, Amy G (2009) Water Res 43:2349

    Article  Google Scholar 

  59. Xu P, Drewes JE, Kim T-U, Bellona C, Amy G (2006) J Membr Sci 279:165

    Article  CAS  Google Scholar 

  60. Izák P, Godinho MH, Brogueira P, Figueirinhas JL, Crespo JG (2008) J Membr Sci 321:337

    Article  Google Scholar 

  61. Hirose M, Ito H, Kamiyama Y (1996) J Membr Sci 121:209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Brazilians authors acknowledge the financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the State of São Paulo Research Foundation (FAPESP). Spanish authors want to thank the “Ministerio de Ciencia e Innovación (MCINN)” for financing this study within the frame of the “Plan Nacional de I+D+I” and through the project CTQ2009-07666. Also the Spanish “Junta de Castilla y León” has contributed through the project Grupos de Excelencia-GR18. The authors also acknowledge FilmtecTM and Microdyn Nadir® fir the donation of the membranes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, A.L., Maugeri, F., Silva, V. et al. AFM analysis of the surface of nanoporous membranes: application to the nanofiltration of potassium clavulanate. J Mater Sci 46, 3356–3369 (2011). https://doi.org/10.1007/s10853-010-5224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5224-7

Keywords

Navigation