Skip to main content
Log in

Morphology and mechanical properties of polyacrylonitrile/attapulgite nanocomposite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The major objective of this work is to understand the effects of attapulgite (AT) on the mechanical properties of polyacrylonitrile (PAN)/AT nanocomposite film. The well dispersed but irregularly distributed AT nanoparticles in the matrix was observed by scanning electron microscopy (SEM) and UV–vis spectra. The mechanical properties were investigated by means of tensile tests and dynamic mechanical analyses (DMA). The results showed that the incorporation of AT significantly improved the tensile strength and modulus of the PAN matrix. The fracture morphologies analysis has further suggested that small amount of AT nanorods may slide and orient along the tensile direction, resulting in homogenous stress transfer, thus increase the toughness of the PAN. However, the nanorods network formed in high AT content sample probably hindered the deformation of the matrix and generated the stress concentration points, leading to the remarkable increase of embrittlement of the samples. Following this concept, the volume of the constrained polymer chains was also calculated with DMA data and showed the good correlation with conclusion drawn in the tensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539

    Article  CAS  Google Scholar 

  2. Letaief S, Detellier C (2009) Langmuir 25:10975

    Article  PubMed  CAS  Google Scholar 

  3. Diaconu G, Micusik M, Bonnefond A, Paulis M, Leiza JR (2009) Macromolecules 42:3316

    Article  ADS  CAS  Google Scholar 

  4. Zhang B, Li YF, Pan XB, Jia X, Wang XL (2007) J Phys Chem Solids 68:135

    Article  ADS  CAS  Google Scholar 

  5. Shen L, Lin YJ, Du QG, Zhong W, Yang YL (2005) Polymer 46:5758

    Article  CAS  Google Scholar 

  6. Peng ZQ, Chen DJ (2006) J Polym Sci B 44:1995

    Article  CAS  Google Scholar 

  7. Li A, Wang A (2005) Eur Polym J 41:1630

    Article  CAS  Google Scholar 

  8. Wang CH, Auad ML, Marcovich NE, Nutt S (2008) J Appl Polym Sci 109:2562

    Article  CAS  Google Scholar 

  9. Galan E (1996) Clay Miner 31:443

    Article  CAS  Google Scholar 

  10. Pan BL, Yue QF, Ren JF, Wang HG, Jian LQ, Zhang JY, Yang SR (2006) Polym Test 25:384

    Article  CAS  Google Scholar 

  11. Tian M, Qu CD, Feng YX, Zhang LQ (2003) J Mater Sci 38:4917. doi:10.1023/B:JMSC.0000004414.27574.93

    Article  ADS  CAS  Google Scholar 

  12. Fernandez-Saavedra R, Aranda P, Ruiz-Hitzky E (2004) Adv Funct Mater 14:77

    Article  CAS  Google Scholar 

  13. Kedem S, Schmidt J, Paz Y, Cohen Y (2005) Langmuir 21:5600

    Article  PubMed  CAS  Google Scholar 

  14. Mack JJ, Viculis LM, Ali A, Luoh R, Yang GL, Hahn HT et al (2005) Adv Mater 17:77

    Article  CAS  Google Scholar 

  15. Ji LW, Saquing C, Khan SA, Zhang XW (2008) Nanotechnology 19:085605

    Article  ADS  CAS  Google Scholar 

  16. Choi YS, Wang KH, Xu MZ, Chung IJ (2002) Chem Mater 14:2936

    Article  CAS  Google Scholar 

  17. Yin H, Mo D, Chen DJ (2009) J Polym Sci B 47:945

    Article  CAS  Google Scholar 

  18. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS et al (2007) Science 318:80

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Koo CM, Ham HT, Choi MH, Kim SO, Chung IJ (2003) Polymer 44:681

    Article  CAS  Google Scholar 

  20. Yu YH, Lin CY, Yeh JM, Lin WH (2003) Polymer 44:3553

    Article  CAS  Google Scholar 

  21. An L, Pan YZ, Shen XW, Lu HB, Yang YL (2008) J Mater Chem 18:4928

    Article  CAS  Google Scholar 

  22. Coleman MM, Sivy GT (1981) Carbon 19:123

    Article  CAS  Google Scholar 

  23. Kalagasidis Krušić M, Džunuzović E, Trifunović S, Filipović J (2004) Euro Polym J 40:793

    Article  CAS  Google Scholar 

  24. Yazdani-Pedram M, Vega H, Quijada R (2001) Polymer 42:4751

    Article  CAS  Google Scholar 

  25. Ouyang Q, Cheng L, Wang HJ, Li KX (2008) Polym Degrad Stabil 93:1415

    Article  CAS  Google Scholar 

  26. Benson RS, Lee MW, Grummitt DW (1995) Nanostruct Mater 6:83

    Article  CAS  Google Scholar 

  27. Dai XH, Xu J, Guo XL, Lu YL et al (2004) Macromolecules 37:5615

    Article  ADS  CAS  Google Scholar 

  28. Yin H, Chen HF, Chen DJ (2010) Polym Eng Sci. doi: 10.1002/pen.21550

  29. Huang JH, Liu YF, Jin QZ, Wang XG (2007) Spectrosc Spect Anal 27:408

    CAS  Google Scholar 

  30. Lachat V, Varshney V, Dhinojwala A, Yeganeh MS (2009) Macromolecules 42:7103

    Article  CAS  Google Scholar 

  31. Shah D, Maiti P, Jiang DD, Batt CA, Giannelis EP (2005) Adv Mater 17:525

    Article  CAS  Google Scholar 

  32. Liu XD, Ruland W (1993) Macromolecules 26:3030

    Article  ADS  CAS  Google Scholar 

  33. Chae HG, Minus ML, Kumar S (2006) Polymer 47:3494

    Article  CAS  Google Scholar 

  34. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Polymer 43:5483

    Article  CAS  Google Scholar 

  35. Hou HQ, Ge JJ, Zeng J, Li Q et al (2005) Chem Mater 17:967

    Article  CAS  Google Scholar 

  36. Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Van Horn B et al (2006) Science 311:1740

    Article  PubMed  ADS  CAS  Google Scholar 

  37. Pan YZ, Xu Y, An L, Lu HB, Yang YL, Chen W, Nutt S (2008) Macromolecules 41:9245

    Article  ADS  CAS  Google Scholar 

  38. Burnside SD, Giannelis EP (2000) J Polym Sci B 38:1595

    Article  CAS  Google Scholar 

  39. Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G (2007) Polymer 48:5662

    Article  CAS  Google Scholar 

  40. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) J Appl Polym Sci 49:1259

    Article  CAS  Google Scholar 

  41. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185

    Article  ADS  CAS  Google Scholar 

  42. Zhang XH, Loo LS (2009) Macromolecules 42:5196

    Article  ADS  CAS  Google Scholar 

  43. Garboczi EJ, Snyder KA, Douglas JF (1995) Phys Rev E 52:819

    Article  ADS  CAS  Google Scholar 

  44. Guo HN, Sreekumara TV, Liu T, Minusa M, Kumar S (2005) Polymer 46:3001

    Article  CAS  Google Scholar 

  45. Wang K, Liang S, Deng JN, Yang H, Zhang Q et al (2006) Polymer 47:7131

    Article  CAS  Google Scholar 

  46. Sumit M, Tsukihi H, Miyasaka K, Ishikawa K (1984) J Appl Polym Sci 29:1523

    Article  Google Scholar 

  47. Sun SS, Li CZ, Zhang L, Du HL, Burnell-Gray JS (2006) Eur Polym J 42:1643

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the National Basic Research Program (973 Program) (No. 2006CB606505), the National Natural Foundation of China (No. 50333050), the Shanghai Fundamental Theory Program (No. 07DJ14002) and the Programme of Introducing Talents of Discipline to Universities (No. 111-2-04) and the Fund of Innovation Project on Doctoral Dissertation of Donghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Chen, H. & Chen, D. Morphology and mechanical properties of polyacrylonitrile/attapulgite nanocomposite. J Mater Sci 45, 2372–2380 (2010). https://doi.org/10.1007/s10853-009-4203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4203-3

Keywords

Navigation