Skip to main content
Log in

Study of oxygen reduction on copper applied to the peroxidase-mediated oxidation of methylene blue

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of oxygen reduction was studied on copper in tartarate solutions using a rotating disc electrode. The effect of pH on the cathodic reduction was examined. AC impedance and cathodic polarization curves showed that the reaction is partially controlled by mass transport. At high current densities, the limiting current values showed that O2 is reduced mainly through the four electron pathway. From measurements of density and viscosity and data taken from Levich and Tafel plots, diffusion coefficients for oxygen in tartarate medium were calculated. Peroxidase-mediated oxidation of methylene blue (MB) results using electrogenerated H2O2 on copper electrode showed that O2 reduction reaction occurs in two steps producing the adsorbed intermediate species H2O2 by k 2. In the absence of peroxidase, the hydrogen peroxide elimination has to be rapid with k 3 ≫ k M. The MB oxidation by lignin peroxidase using electrogenerated H2O2 was studied. After 24 h LiP is able to oxide the MB, producing different oxidized forms: azure C and thionine, with yield of 23% and 66%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vazquez MV, Sanchez SR, Calvo EJ, Schiffrin DJ (1994) J Electroanal Chem 374:189

    Article  CAS  Google Scholar 

  2. Calvo EJ, Schiffrin DJ (1998) J Electroanal Chem 243:171

    Article  Google Scholar 

  3. Jin S, Ghali E (1991) J Appl Electrochem 21:247

    Article  CAS  Google Scholar 

  4. Jin S, Djellab H, Ghali E (1990) Hydrometallurgy 24:53

    Article  CAS  Google Scholar 

  5. Jin S, Ghali E (1992) Can Met Q 31:259

    CAS  Google Scholar 

  6. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  7. Brisard G, Bertrand N, Ross PN, Markovic NM (2000) J Electroanal Chem 480:219

    Article  CAS  Google Scholar 

  8. Ceré S, Vazquez MV, Sanchez SR, Schiffrin DJ (2001) J Electroanal Chem 505:118

    Article  Google Scholar 

  9. Markovic NM, Gasteiger HA, Ross PN (1997) J Electrochem Soc 144:1591

    Article  CAS  Google Scholar 

  10. Markovic NM, Gigur BN, Ross PN (1997) J Phys Chem 101:5405

    CAS  Google Scholar 

  11. Markovic NM, Adzic RR, Vesovic VB (1984) J Electroanal Chem 165:121

    Article  CAS  Google Scholar 

  12. Wroblowa HS, Pan YC, Razumney G (1976) J Electroanal Chem 69:195

    Article  CAS  Google Scholar 

  13. Vesovic V, Annastasijevic N, Adzic RR (1987) J Electroanal Chem 218:53

    Article  CAS  Google Scholar 

  14. Jiwei L, Jingxia Q, Miao Y, Chen J (2008) J Mater Sci 43:6285. doi:10.1007/s10853-008-2905-6

    Article  ADS  CAS  Google Scholar 

  15. Rotta CEL, Werberich DS, D’Elia E (2008) Electrochem Comm 10:108

    Article  CAS  Google Scholar 

  16. Rotta CEL, D’Elia E, Bon EPS (2007) Elect J Biotechnol 10:24

    Google Scholar 

  17. Rotta CEL, Werberich DS, Contrucci M, D’Elia E (2007) Elect J Biotechnol 10:1

    Google Scholar 

  18. Tarasevich MR, Sadkowski A, Yeager E (1983) In: Conway BE, Bockris JOM, Yeager E, Khan SUM, White R (eds) Comprehensive treatise of electrochemistry, vol 7. Plenum Press, New York

    Google Scholar 

  19. Yuan R, Guan R, Shen W, Zheng J (2005) J Colloid Interface Sci 282:87–91

    Article  CAS  PubMed  Google Scholar 

  20. Yogi C, Kojima K, Takai T, Wada N (2009) J Mater Sci 44:821–827. doi:10.1007/s10853-008-3151-7

    Article  CAS  ADS  Google Scholar 

  21. Ramalho TC, Carvalho HWP, Batista APL, Pérez CA, Gobbi AL (2009) J Mater Sci 44:1029. doi:10.1007/s10853-008-3206-9

    Article  CAS  ADS  Google Scholar 

  22. Ferreira-Leitão VS, Silva JG, Bon EPS (2003) Appl Catal B Environ 42:213

    Article  CAS  Google Scholar 

  23. Winkler LW (1888) Chem Ber 21:2843

    Article  Google Scholar 

  24. Wheatland AB, Smith LJ (1955) J Appl Chem 5:144

    CAS  Google Scholar 

  25. Delouis C, Tribollet B, Mengoli G, Musiani M (1988) J Appl Electrochem 18:384

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to CAPES/Brazil for the doctoral research grant given to Jaqueline B. de Matos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane D’Elia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Matos, J.B., Cardoso, M.J.E.M., Barcia, O.E. et al. Study of oxygen reduction on copper applied to the peroxidase-mediated oxidation of methylene blue. J Mater Sci 45, 1677–1682 (2010). https://doi.org/10.1007/s10853-009-4151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4151-y

Keywords

Navigation