Skip to main content
Log in

Molecular dynamics simulation of SWCNT–polymer nanocomposite and its constituents

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Elastic and engineering properties of nanoparticle enhanced composites and their constituents (matrix, reinforcement and interface) are calculated. The nanocomposites considered in this study consist of a single-wall carbon nanotube (SWCNT) embedded in polyethylene matrix. Molecular dynamics simulations are used to estimate the elastic properties of SWCNT, interfacial bonding, polyethylene matrix and composites with aligned and randomly distributed SWCNTs. The elastic properties of bundles with 7, 9, and 19 SWCNTs are also compared using a similar approach. In all simulations, the average density of SWCNT–polymer nanocomposite was maintained in the vicinity of CNTs, to match the experimentally observed density of a similar nanocomposite. Results are found to be in good agreement with experimentally obtained values by other researchers. The interface is an important constituent of CNT–polymer composites, which has been modeled in the present research with reasonable success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

H :

Hamiltonian of the system

Ψ:

Wave function

R :

Position vector of atomic nucleus

r i :

Position vector of an electron in the atom (or any particle in general)

Θ:

Force field

m :

Mass of the particle

t :

Time

E total, U :

Total potential energy of the system

K 2, K 3, K 4 :

Force constants associated with bond length change

b :

Changed bond length

b o :

Equilibrium bond length

K 2θ , K 3θ , K 4θ :

Force constants associated with bond angle change

θ :

Changed angle between two bonds

θ o :

Equilibrium angle between two bonds

\( K_{{1\phi }} ,K_{{2\phi }} ,K_{{3\phi }} \) :

Force constants associated with bond torsion

\( \phi \) :

Torsion angle

K :

Force constants associated with out of plane angle change

χ :

Out of plane angle

χ 0 :

Equilibrium out-of-plane angle

Kbθ :

Force constants associated with bond length change and bond angle change coupling

K 1b, K 2b, K 3b :

Force constants associated with bond length change and bond torsion coupling

\( K_{{1\theta \phi }} ,K_{{2\theta \phi }} ,K_{{3\theta \phi }} \) :

Force constants associated with bond angle change and bond torsion coupling

\( K_{{\theta \phi }} \) :

Force constants associated with second order bond angle change and bond torsion coupling

e :

Charge of an electron

C ijkl :

Stiffness matrix

σ ij :

Stress component

ε kl :

Strain component

A :

Helmholtz free energy

V :

Volume of the simulation cell

V o :

Undeformed volume of the simulation cell

v :

Velocity of the particle

f i :

Force acting on the particle i

p i :

Momentum of the atom (particle) in original system

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{F},\ifmmode\expandafter\bar\else\expandafter\=\fi{G} \) :

Trajectory average of any thermodynamic property

N :

Total number of atoms in the system

ρ i :

Position vector in the scaled coordinate system

Q :

Same as volume, V

η, M :

Constants

π i :

Momentum conjugate to ρ i

Π:

Momentum conjugate to Q

S:

Stochastic collision term for atoms

γ:

Mean rate of stochastic collision

C ij :

Material stiffness matrix

E ij , υ ij , μ ij , K ij :

Engineering constants (Youngs modulus, Poisson’s ratio, shear modulus and bulk modulus)

E pull-out :

Pull-out energy

τ i :

Interfacial shear stress

a :

Radius of the nanotube

L :

Length of the nanotube

References

  1. Deng CF, Wang DZ, Zhang XX, Li AB (2007) Mater Sci Eng A 444:138

    Article  Google Scholar 

  2. Yoon PJ, Fornes TD, Paul DR (2002) Polymer 43:6727

    Article  CAS  Google Scholar 

  3. Mishra S, Sonawane S, Chitodkar V (2005) Polym Plast Technol Eng 44:463–473

    Article  CAS  Google Scholar 

  4. Gilman JW, Jackson CL, Morgan AB, Harris R Jr (2000) Chem Mater 12:1866

    Article  CAS  Google Scholar 

  5. Strawhecker KE, Manias E (2000) Chem Mater 12:2943

    Article  CAS  Google Scholar 

  6. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Chem Mater 8:1728

    Article  CAS  Google Scholar 

  7. Xu R, Manias E, Snyder AJ, Runt J (2001) Macromolecules 34:337

    Article  CAS  Google Scholar 

  8. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185

    Article  CAS  Google Scholar 

  9. Odegard GM, Gates TS, Nicholson LM, Wise C (2002) NASA ICASE report NASA/TM-2002-211454, March 2002

  10. Odegard GM, Gates TS, Nicholson LM, Wise C (2001) NASA ICASE report NASA/TM-2001-210863, May 2001

  11. Li C, Chou T (2003) Int J Solids Struct 40:2487

    Article  Google Scholar 

  12. Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang K (2002) Int J Solids Struct 39:3893

    Article  Google Scholar 

  13. Zhang P, Huang Y, Gao H, Hwang K (2002) Trans ASME 69:454

    CAS  Google Scholar 

  14. Arroyo M, Belytschko T (2004) Phys Rev B 69:115415.1

    Article  Google Scholar 

  15. Zhang P, Jiang H, Huang Y, Geubelle PH, Hwang KC (2004) J Mech Phys Solids 52:977

    Article  CAS  Google Scholar 

  16. Jiang H, Zhang P, Liu B, Huang Y, Geubelle PH, Gao H, Hwang KC (2003) Comput Mater Sci 28:429

    Article  CAS  Google Scholar 

  17. Jiang H, Feng XQ, Huang Y, Hwang KC, Wu PD (2004) Comput Methods Appl Mech Eng 193:3419

    Article  Google Scholar 

  18. Arroyo M, Belytschko T (2003) Phys Rev Lett 91(21):215505.1

    Article  Google Scholar 

  19. Tersoff J (1988) Phys Rev B 37:6991

    Article  Google Scholar 

  20. Brenner DW (1990) Phys Rev B 42:9458

    Google Scholar 

  21. Yakobson BI, Cambell MP, Brabec CJ, Bernholc J (1997) Comput Mater Sci 8:341

    Article  CAS  Google Scholar 

  22. Belytschko T, Xiao SP, Schatz GC (2002) Phys Rev B 65(23):235430.1

    Article  Google Scholar 

  23. (2005) MS modeling 4.0 Online help manual, Accelrys Inc.

  24. www.wikipedia.org, the free web based encyclopedia, accessed on 05-01-2006

  25. Sun H (1998) J Phys Chem B 102:7338

    Article  CAS  Google Scholar 

  26. Christensen R (1991) Mechanics of composite materials. Krieger Publishing Company, Malbar, Fl, p 74

    Google Scholar 

  27. Chou TW, Thostenson ET, Ren ZF (2001) Composit Sci Technol 61:1899

    Article  Google Scholar 

  28. http://www.pslc.ws/macrog/pe.htm, Polymer science learning center, The University of Southern Mississippi

  29. Gou J, Jiang S, Minaie B, Liang Z, Chuck Z, Wang B (2003) IMECE’03 – 41138, Proceedings of IMECE’03 international engineering congress and exposition. Washington, D.C., November 16–21, 2003, p 1

  30. Liao K, Li S (2001) Appl Phys Lett 79(25):4225

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors wish to acknowledge partial support for this research by ONR Grant#N00014-06-1-0577, Office of Naval Research, Solid Mechanics Program (Dr. Yapa D.S. Rajapakse, Program Manager); and by the NASA EPSCoR Research Infrastructure Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Al-Ostaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Ostaz, A., Pal, G., Mantena, P.R. et al. Molecular dynamics simulation of SWCNT–polymer nanocomposite and its constituents. J Mater Sci 43, 164–173 (2008). https://doi.org/10.1007/s10853-007-2132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2132-6

Keywords

Navigation