Skip to main content
Log in

Synergistic effects of metals and oxidants in the curing of marine mussel adhesive

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Marine mussels produce an impressive adhesive material for affixing themselves to rocks in the turbulent marine environment. This glue is generated by application of proteins to the surface followed by extensive cross-linking to yield the final matrix. Prior studies have shown that simple oxidation or reactivity brought about by metal ions may be key to this protein cross-linking process. Here we have explored protein cross-linking reactivity in which combinations of metals and oxidants may display synergistic effects with respect to adhesive curing. Extracted adhesive proteins were mixed with a series of metals, oxidants, and combinations thereof. In some cases, synergistic curing was observed. For example, we found that iron(II) ions with hydrogen peroxide brought about a greater degree of protein cross-linking than the sum of the individual components. These studies were performed as part of our efforts to provide perspectives on the connections between biology, chemistry, and functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Naldrett MJ, Kaplan DL (1997) Marine Biol 127:629

    Article  CAS  Google Scholar 

  2. Naldrett MJ (1993) J Mar Biol Assoc UK 73:689

    CAS  Google Scholar 

  3. Dougherty WJ (1990) J Crustacean Biol 10:469

    Article  Google Scholar 

  4. Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, Shizuri Y (2000) J Biol Chem 275:27360

    CAS  Google Scholar 

  5. Kamino K, Odo S, Maruyama Y (1996) Biol Bull 190:403

    Article  CAS  Google Scholar 

  6. Yamamoto H, Nagai A (1992) Marine Chem 37:131

    Article  CAS  Google Scholar 

  7. Deming TJ (1999) Curr Opin Chem Biol 3:100

    Article  CAS  Google Scholar 

  8. Waite JH, Andersen NH, Jewhurst S, Sun C (2005) J Adhes 81:297

    Article  CAS  Google Scholar 

  9. Waite JH (2002) Integr Comp Biol 42:1172

    Article  CAS  Google Scholar 

  10. Waite JH, Lichtenegger HC, Stucky GD, Hansma P (2004) Biochemistry 43:7653

    Article  CAS  Google Scholar 

  11. Coombs TL, Keller PJ (1981) Aquat Toxicol 1:291

    Article  CAS  Google Scholar 

  12. George SG, Pirie BJS, Coombs TL (1976) J Exp Mar Biol 23:71

    Article  CAS  Google Scholar 

  13. Pentreath RJ (1973) J Mar Biol Assoc UK 53:127

    CAS  Google Scholar 

  14. Hobden DJ (1967) J Mar Biol Assoc UK 47:597

    Article  CAS  Google Scholar 

  15. Szefer P, Geldon J, Ahmed-Ali A, Osuna FP, Ruiz-Fernandes AC, Galvan SRG (1998) Environ Int 24:359

    Article  CAS  Google Scholar 

  16. Koide M, Lee DS, Goldberg ED (1982) Estuar Coastal Shelf Sci 15:679

    Article  CAS  Google Scholar 

  17. Fant C, Elwing H, Hook F (2002) Biomacromolecules 3:732

    Article  CAS  Google Scholar 

  18. Fant C, Sott K, Elwing H, Hook F (2000) Biofouling 16:119

    CAS  Google Scholar 

  19. Suci PA, Geesey GG (2000) J Colloid Interface Sci 230:340

    Article  CAS  Google Scholar 

  20. Hansen DC, Corcoran SG, Waite JH (1998) Langmuir 14:1139

    Article  CAS  Google Scholar 

  21. Burzio LA, Burzio VA, Pardo L, Burzio LO (2000) Comp Biochem Physiol B 126:383

    Article  CAS  Google Scholar 

  22. Lee H, Scherer NF, Messersmith PB (2006) Proc Natl Acad Sci USA 103:12999

    Article  CAS  Google Scholar 

  23. Loizou E, Weisser JT, Dundigalla A, Porcar L, Schmidt G, Wilker JJ (2006) Macromol Biosci 6:711

    Article  CAS  Google Scholar 

  24. Weisser JT, Nilges MJ, Sever MJ, Wilker JJ (2006) Inorg Chem 45:7736

    Article  CAS  Google Scholar 

  25. Sever MJ, Wilker JJ (2006) Dalton Trans 813

  26. Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ (2004) Angew Chem Int Ed 43:448

    Article  CAS  Google Scholar 

  27. Monahan J, Wilker JJ (2004) Langmuir 20:3724

    Article  CAS  Google Scholar 

  28. Monahan J, Wilker JJ (2003) Chem Commun 1672

  29. Taylor SW, Luther GW III, Waite JH (1994) Inorg Chem 33:5819

    Article  CAS  Google Scholar 

  30. Taylor SW, Chase DB, Emptage MH, Nelson MJ, Waite JH (1996) Inorg Chem 35:7572

    Article  CAS  Google Scholar 

  31. Frank BP, Belfort G (2001) Langmuir 17:1905

    Article  CAS  Google Scholar 

  32. Frank BP, Belfort G (2002) Biotechnol Prog 18:580

    Article  CAS  Google Scholar 

  33. Waite JH (1992) Biol Bull 183:178

    Article  CAS  Google Scholar 

  34. Rzepecki LM, Waite JH (1991) In: Scheuer PJ (ed) Bioorganic marine chemistry. Springer-Verlag

  35. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253

    Article  CAS  Google Scholar 

  36. Gozzo F (2001) J Mol Catal A 171:1

    Article  CAS  Google Scholar 

  37. Waite JH (1985) J Mar Biol Assoc UK 65:359

    Article  CAS  Google Scholar 

  38. Mishra B, Hassan PA, Priyadarsini KI, Mohan H (2005) J Phys Chem B 109:12718

    Article  CAS  Google Scholar 

  39. Halliwell B (1990) Free Radic Res Commun 9:1

    CAS  Google Scholar 

  40. Sunda WG (2001) In: Turner DR, Hunter KA (ed) The biogeochemistry of iron in seawater. Wiley

  41. Ussher SJ, Achterberg EP, Worsfold PJ (2004) Environ Chem 1:67

    Article  CAS  Google Scholar 

  42. Achterberg EP, Holland TW, Bowie AR, Fauzi R, Mantoura C, Worsfold PJ (2001) Anal Chim Acta 442:1

    Article  CAS  Google Scholar 

  43. Richardson DR (2005) Curr Med Chem 12:2711

    Article  CAS  Google Scholar 

  44. Lide DR (1992) CRC handbook of chemistry and physics, 73rd edn. CRC Press, Boca Raton

    Google Scholar 

  45. Bratsch SG (1989) J Phys Chem Ref Data 18:1

    Article  CAS  Google Scholar 

  46. Waite JH (1995) Methods Enzymol 258:1

    Article  CAS  Google Scholar 

  47. Bourne MC (1966) J Food Sci 31:282

    Article  Google Scholar 

  48. Bourne MC (1967) J Food Sci 32:601

    Article  Google Scholar 

  49. Bourne MC (1975) J Texture Stud 5:459

    Article  Google Scholar 

  50. Bourne MC (1982) In: Food texture and viscosity: concept and measurement. New York

  51. deMan JM (1969) J Texture Stud 1:114

    Article  Google Scholar 

  52. Sever MJ, Wilker JJ (2004) Dalton Trans 1061

  53. Decker H, Tuczek F (2000) Trends Biochem Sci 25:392

    Article  CAS  Google Scholar 

  54. Balla J, Kiss T, Jameson RF (1992) Inorg Chem 31:58

    Article  CAS  Google Scholar 

  55. Bard AJ, Parsons R, Jordan J (1985) In: Standard potentials in aqueous solution. New York

  56. Donat JR, Bruland KW (1995) In: Salbu B, Steinnes E (ed) Trace elements in natural waters. CRC Press

  57. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) J Inorg Biochem 91:9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

LMH was a summer researcher in the Purdue University Chemical Biology Research Experience for Undergraduates program, sponsored by the National Science Foundation. This work was also supported by the Lord Corporation and the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Wilker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hight, L.M., Wilker, J.J. Synergistic effects of metals and oxidants in the curing of marine mussel adhesive. J Mater Sci 42, 8934–8942 (2007). https://doi.org/10.1007/s10853-007-1648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1648-0

Keywords

Navigation