Skip to main content
Log in

Study of the hydrolysis and condensation of γ-Aminopropyltriethoxysilane by FT-IR spectroscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydrolysis and condensation reactions of γ-APS have been studied in different acid content aqueous solution by using Fourier Transform infrared (FT-IR) spectroscopy. The hydrolysis of γ-APS under the studied conditions can be followed by the increase of the ethanol band located at 882 cm−1 and the decrease of the band due to the ρ(CH3) of γ-APS molecules located at 959 cm−1. Hydrolysis reaction is faster by increasing both H2O and acid concentrations, and it is completed when 3 moles of H2O per mole of γ-APS are used. The increase of the vibrational band located at 1146 cm−1 shows that condensation of the hydrolysed γ-APS molecules take place forming linear chains in poorly cross-linked structures. Besides, both 8-membered cyclic siloxane formations and poorly cross-linked structures are formed and increase as the water and acid content are increased. On the other hand, highly connected cross-linked structures do not appear due to the steric hindrance of the non-hydrolysable aminopropyl group. The silanol band shows that hydrolysis is faster than condensation except for samples with the lowest H2O content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pluddemann EP (1982) Silane coupling agents. Plenum Press, New York

    Google Scholar 

  2. Johanson OK, Stark FO, Vogel GE, Fleischmann RM (1967) J Compos Mater 1:278

    Google Scholar 

  3. Kwei TK (1965) f. J Polym Sci A3:3229

    Google Scholar 

  4. Zisman WA (1964) Proc 11th Ann Tech Conf, Reinforced Plastics Div Spi Section 9-B

  5. Bascom WD (1965) Proc 20th Ann Tech Conf, Reinforced Plastics Div, Spi, Section 15-B

  6. Culler SR, Ishida H, Koenig JL (1982) Polymer 23:251

    Article  Google Scholar 

  7. Naviroj S, Culler SR, Koenig JL, Ishida H (1984) J Coll Inter Sci 97(2):308

    Article  CAS  Google Scholar 

  8. Culler SR, Naviroj S, Ishida H, Koenig JL (1983) J Coll Inter Sci 96(1):69

    Article  CAS  Google Scholar 

  9. Ishida H, Koenig JL (1980) J Polym Sci: Phys Ed 18:233

    Article  CAS  Google Scholar 

  10. Naviroj S, Koenig JL, Ishida H (1983) J Macromol Sci–Phys B22(2):291

    CAS  Google Scholar 

  11. Culler SR, Ishida H, Koenig JL (1986) J Coll Inter Sci 109(1):1

    Article  CAS  Google Scholar 

  12. White LD, Tripp CP (2000) J Coll Int Sci 232:400

    Article  CAS  Google Scholar 

  13. Shimizu I, Okabayashi H, Taga K, Nishio E, O´Connor CJ (2001) Vib Spectrosc 14: 135

    Google Scholar 

  14. Vandenberg ET, Bertilson L, Liedberg B, Uvdal K, Erlandson R, Elwing H, Lundstrom I (1991) J Coll Int Sci 147(1):103

    Article  CAS  Google Scholar 

  15. Herder P, Vagberg L, Stenius P (1988/89) Coll Surf 34:117

    Article  CAS  Google Scholar 

  16. Aliè C, Pirard R, Lecloux AJ, Pirard J (2001) J Non-Cryst Solids 285:135

    Article  Google Scholar 

  17. Schmidt H (1984) Mat Res Soc Symp Proc 32:327

    CAS  Google Scholar 

  18. Hu Y, Chung YJ, Mackenzie JD (1993) J Mater Sci 28:6549

    Article  CAS  Google Scholar 

  19. Mackenzie JD (1994) J Sol–Gel Sci Tech 2:81

    Article  CAS  Google Scholar 

  20. Nassar EJ, Gonzalbes RR, Ferrari M, Messaddeq Y, Ribeiro JL (2000) J Alloys Compd 344(1–2):221

    Google Scholar 

  21. Sanchez C, Lebeau B, Ribot F, In M (2000) J Sol–Gel Sci Tech 19:31

    Article  CAS  Google Scholar 

  22. Sung P-H, Lin C-Y (1997) Eur Polym J 33(6):903

    Article  CAS  Google Scholar 

  23. Ottenbrite RM, Wall JS (2000) J Am Ceram Soc 83(12):214

    Article  Google Scholar 

  24. Vrancken KC, Van Der Voort P, Possemiers K, Vansant EF (1995) J Coll Int Sci 174:86

    Article  CAS  Google Scholar 

  25. Zhmud BV, Sonnefeld J (1996) J Non-Cryst Solids 195:16

    Article  CAS  Google Scholar 

  26. Hurwitz FI, Heimann PJ, Gyekenyesi JZ, Masnovi J, Bu XY (1991) Ceram Eng Sci Proc 12(7–8):1292

    Article  CAS  Google Scholar 

  27. Brinker CJ, Sherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  28. Beari F, Brand M, Jenker P, Lehnert R, Metternich HJ, Monkiewicz J, Siesler HW (2001) J Organomet Chem 625:208

    Article  CAS  Google Scholar 

  29. Ishida H, Suzuki Y (1986) Compos Interfaces 317

  30. Schreiber G (1996) Spectrochim Acta 22:107

    Article  Google Scholar 

  31. Chiang CH, Ishida H, Koenig JL (1980) J Coll Inter Sci 74(2):396

    Article  CAS  Google Scholar 

  32. Socrates G (1994) Infrared characteristics group frequencies. John Wiley And Sons, Chisheter

    Google Scholar 

  33. Matos MC, Ilharco LH, Almeida LM (1992) J Non-Cryst Solids 147/148:232

    Article  Google Scholar 

  34. Andrianov KA (1996) J Polym Sci 52:257

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Comisión Interministerial de Ciencia y Tecnología (CICYT) of Spain for financial support of this work under project MAT2002-03891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Peña-Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña-Alonso, R., Rubio, F., Rubio, J. et al. Study of the hydrolysis and condensation of γ-Aminopropyltriethoxysilane by FT-IR spectroscopy. J Mater Sci 42, 595–603 (2007). https://doi.org/10.1007/s10853-006-1138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1138-9

Keywords

Navigation