Skip to main content
Log in

Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article describes the solution combustion synthesis technique as applicable to iron oxide powder production using urea as fuel and ferric nitrate as an oxidizer. It focuses on the thermodynamic modeling of the combustion reaction under different fuel-to-oxidant ratios. X-ray diffraction showed magnetite (Fe3O4) and hematite (α-Fe2O3) phase formations for the as-synthesized powders. The smallest crystallite size was obtained by stoichiometric chemical reaction. The magnetic properties of the samples are also carefully discussed as superparamagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) Appl Catal B: Environ 43(2):151

    Article  CAS  Google Scholar 

  2. Potter MJ (2001) Iron oxide pigments. U.S. Geological Survey Minerals Yearbook, vol 1. 42 pp

  3. Hsiang H, Yen F (2002) Ceram Int 29:1

    Article  Google Scholar 

  4. Yang H, Guo Q, Teng X (2003) J Am Chem Soc 125:630

    Article  CAS  Google Scholar 

  5. Saiyed ZM, Telang SD, Ramchand CN (2003) Biomagn Res Technol 18(1):1

    Google Scholar 

  6. Cheng F, Su C, Yang Y, Yeh C, Tsai C, Wu C, Wu M, Shieh D (2005) Biomaterials 7(26):729

    Article  CAS  Google Scholar 

  7. Harris L (2002) Polymer stabilized magnetite nanoparticles and poly(propylene oxide) modified styrene-dimethacrylate networks. Doctoral Thesis, Virginia State University, Blacksburg, VI, USA, p 28

  8. Meldrum FC, Kotov NA, Fendler JH (1994) Am Chem Soc 98:4506

    CAS  Google Scholar 

  9. Raming TP, Winnubst AJA, van Kats CM, Philipse AP (2002) J Colloid Interf Sci 249:346

    Article  CAS  Google Scholar 

  10. Zhu Y, Wu Q (1999) J Nanopart Res 1:393

    Article  CAS  Google Scholar 

  11. Patil KC, Aruna ST, Mimani T (2002) Curr Opin Solid State Mater Sci 6:507

    Article  CAS  Google Scholar 

  12. Civera A, Pavese M, Saracco G, Specchia V (2003) Catal Today 83:199

    Article  CAS  Google Scholar 

  13. Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Appl Catal B: Environ 48:83

    Article  CAS  Google Scholar 

  14. Xijuan Y, Pingbo X, Qingde S (2001) Phys Chem Chem Phys 3:5266

    Article  CAS  Google Scholar 

  15. Suresh K, Patil K (1993) J Mater Sci Lett 12:572

    CAS  Google Scholar 

  16. Venkataraman A, Hiremath VA, Date SK, Kulkarni SD (2001) Bull Mater Sci 24:617

    CAS  Google Scholar 

  17. Deshpande K, Mukasyan A, Varma A (2004) Chem Mater 16:4896

    Article  CAS  Google Scholar 

  18. Erri P, Pranda P, Varma A (2004) Ind Eng Chem Res43:3092

    Article  CAS  Google Scholar 

  19. Bhaduri S, Bhaduri SB, Zhou E (1998) J Mater Res 13:156

    CAS  Google Scholar 

  20. Purohit RD, Sharma BP, Pillai KT, Tyagi AK (2001) Mater Res Bull 36:2711

    Article  CAS  Google Scholar 

  21. Toniolo JC, Lima MD, Takimi AS, Bergmann CP (2005) Mater Res Bull 40:561

    Article  CAS  Google Scholar 

  22. Souza VC, Segadães AM, Morelli MR, Kiminami RHGA (1999) Int J Inorg Mater 1:235

    Article  Google Scholar 

  23. Perry RH, Chilton CH (1973) Chemical engineers handbook, 5th edn. McGraw-Hill, New York, p 197

  24. Dean JA (ed) (1979) Lange’s handbook of chemistry, 12th edn. McGraw-Hill, New York

  25. Sundman B (1991) J Phase Equilib 127

  26. Li Y, Zhao J, Jiang J, He X (2003) Mater Chem Phys 82:991

    Article  CAS  Google Scholar 

  27. Albuquerque AS, Ardisson JD, Macedo WAA (2000) J Appl Phys 87:4352

    Article  CAS  Google Scholar 

  28. Hejda P, Kapička A, Petrovský E, Sjöberg B (1994) IEEE Trans 2(30):881

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Undergraduate student Luciana J. Stein for combustion synthesis measurements, Eng. Hugo J. de Andrade for providing support on Scanning Electron Microscopy and Angelo R. Morrone for the aid in Vibrating Sample Magnetometer technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano Toniolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toniolo, J., Takimi, A.S., Andrade, M.J. et al. Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles. J Mater Sci 42, 4785–4791 (2007). https://doi.org/10.1007/s10853-006-0763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0763-7

Keywords

Navigation