Skip to main content
Log in

Complex between modified β-cyclodextrins and three components of traditional Chinese medicine in supercritical carbon dioxide medium

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work, the complex between three hydrophobic efficacious components of plants (anisole, asarone, curcumin) and modified cyclodextrin (2-hydroxypropyl-β-cyclodextrin, methyl-β-cyclodextrin) was investigated in supercritical carbon dioxide medium; and compared with the corresponding complex in air circumstance. The effect of the substitute group in the drug molecule on the complex reaction was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Weng, H.X., Wang, C.L., Ma, L.: Comparison between two approaches to determine the recovery of volatile oil from their β-cyclodextrin inclusion complex. Her. Med. 25(1), 63–64 (2006)

    CAS  Google Scholar 

  2. Li, S.Z., Zhao, H.X., Bai, W.G.: The study for the methodology to prepare the inclusion complex between asarone volatile oil and β-cyclodextrin. Chin. J. Basic Med. Tradit. Chin. Med. (Chin.) 9(2), 63 (2003)

    CAS  Google Scholar 

  3. Ma, R., Liu, Q., Xiao, L.: Preparation technology of volatile oils obtained from asarum and lily magnolia complexed with β-cyclodextrin and hydroxypropyl-β-cyclodextrin and its impacts of transdermal absorption. Chin. J. Inf. TCM (Chin.) 15(6), 52 (2008)

    Google Scholar 

  4. Gao, Z.S., Wang, L.: Studies on preparation and physicochemical properties of inclusion complex of curcumin with HP-β-cyclodextrin. China Pharm. (Chin.) 18, 999–1000 (2007)

    CAS  Google Scholar 

  5. Liu, Y.S., Wang, X.L.: Formulation and preparation of curcumine methyl-β-cyclodextrin inclusion complex. Med. J. Chin. People’s Armed Police Forces (Chin.) 18(5), 337–339 (2007)

    CAS  Google Scholar 

  6. Yadav, V.R., Suresh, S., Devi, K., Yadav, S.: Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 10(3) (2009). doi:10.1208/s12249-009-9264-8

  7. Kamihira, M., Asai, T., Yamagata, Y., Taniguchi, M., Kobayashi, T.: Formation of inclusion complex between cyclodextrins and aromatic compounds under pressurized carbon dioxide. J. Ferment. Bioeng. 69, 350–353 (1991)

    Article  Google Scholar 

  8. Hees, T.V., Piel, G., Evrared, B., Otte, X., Thunnus, L., Delattre, L.: Application of supercritical carbon dioxide for the preparation of a piroxicam-β-cyclodextrin inclusion compound. Pharm. Res. 16, 1864–1870 (1999)

    Article  Google Scholar 

  9. Charoenchaitrakool, M., Dehghani, F., Foster, N.R.: Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-β-cyclodextrin. Int. J. Pharm. 239, 103–112 (2002)

    Article  CAS  Google Scholar 

  10. Junco, S., Casimiro, T., Ribeiro, N., Ponte, M.N., Marques, H.C.: A comparative study of naproxen-beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 44, 117–121 (2002)

    Article  CAS  Google Scholar 

  11. Lai, S., Locci, E., Piras, A., Porcedda, S., Lai, A., Marongiu, B.: Imazalil-cyclomaltoheptaose (β-cyclodextrin) inclusion complex: preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization. Carbohydr. Res. 338, 2227–2232 (2003)

    Article  CAS  Google Scholar 

  12. Locci, E., Lai, S., Piras, A., Marongiu, B., Lai, A.: 13C-CPMAS and 1H-NMR study of the inclusion complexes of β-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem. Biodivers. 1, 1354 (2004)

    Article  CAS  Google Scholar 

  13. Bandia, N., Weib, W., Robertsc, C.B., Kotrac, L.P., Kompellaa, U.B.: Preparation of budesonide and indomethacin-hydroxypropyl-β-cyclodextrin (HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur. J. Pharm. Sci. 23, 159–168 (2004)

    Article  Google Scholar 

  14. Wu, M., Yuguchi, Y., Kumagai, T., Endo, T., Hirotsu, T.: Nano-complex formation of cyclodextrin and azobenzene using supercritical carbon dioxide. Chem. Commun. 1288–1289 (2004). doi:10.1039/b400289j

  15. Rodier, E., Lochard, H., Sauceau, M., Letourneau, J., Freiss, B., Fages, J.: A three step supercritical process to improve the dissolution rate of eflucimibe. Eur. J. Pharm. Sci. 26, 184–193 (2005)

    Article  CAS  Google Scholar 

  16. Ibrahim, S., Ali, H., Al, M., Babomcarr, J., Ali, D.: Enhancement of aqueous solubility of itraconazole by complexation with cyclodextrins using supercritical carbon dioxide. Can. J. Chem. 83, 1833–1838 (2005)

    Article  Google Scholar 

  17. AL-Marzouqi, A.H., Shehatta, I., Jobe, B., Dowaidar, A.: Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. J. Pharm. Sci. 95, 292–304 (2006)

    Article  CAS  Google Scholar 

  18. Wang, B., He, J., Sun, D.H., Zhang, R., Han, B.X.: Utilization of supercritical carbon dioxide for preparation of 3-hydroxyflavone and β-cyclodextrin complex. J. Incl. Phenom. Macrocycl. Chem. 55, 37–40 (2006)

    Article  CAS  Google Scholar 

  19. Ali, H., Al, M., Baboucarr, J., Ali, D., Francesca, M., Paola, M.: Evaluation of supercritical fluid technology as preparative technique of benzocaine-cyclodextrin complex comparison with conventional methods. J. Pharm. Biomed. 43, 566–574 (2007)

    Article  Google Scholar 

  20. Arezki, B., Elisabeth, R., Jacques, F.: Maturation of ketoprofen/β-cyclodextrin mixture with supercritical carbon dioxide. J. Supercrit. Fluids 41, 429–439 (2007)

    Article  Google Scholar 

  21. Khaled, H., Michael, T., Martin, A.W.: Comparative evaluation of ibuprofen/β-cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods. Pharm. Res. 24, 585–592 (2007)

    Article  Google Scholar 

  22. Al-Marzouqi, A.H., Jobe, B., Corti, G., Cirri, M., Mura, P.: Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Incl. Phenom. Macrocycl. Chem. 57, 223–231 (2007)

    Article  CAS  Google Scholar 

  23. Moribe, K., Fujito, T., Tozuka, Y., Yamamoto, K.: Solubility dependent complexation of active pharmaceutical ingredients with trimethyl-β-cyclodextrin under supercritical fluid condition. J. Incl. Phenom. Macrocycl. Chem. 57, 289–295 (2007)

    Article  CAS  Google Scholar 

  24. Lee, S.Y., Jung, I.L., Kim, J.K., Lim, G.B., Ryu, J.H.: Preparation of itraconazole/HP-B-CD inclusion complexes using supercritical aerosol solvent extraction system and their dissolution characteristics. J. Supercrit. Fluids 44, 400–408 (2008)

    Article  CAS  Google Scholar 

  25. Al-Marzouqi, A.H., Solieman, A., Shehadi, I., Adem, A.: Influence of the preparation method on the physicochemical properties of econazole-β-cyclodextrin complexes. J. Incl. Phenom. Macrocycl. Chem. 60, 85–93 (2008)

    Article  CAS  Google Scholar 

  26. Sauceau, M., Rodier, E., Fages, J.: Preparation of inclusion complex of piroxicam with cyclodextrin by using supercritical carbon dioxide. J. Supercrit. Fluids 47, 326–332 (2008)

    Article  CAS  Google Scholar 

  27. Al-Marzouqia, A.H., Elwya, H.M., Shehadib, I., Ademc, A.: Physicochemical properties of antifungal drug–cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Pharm. Biomed. Anal. 49, 227–233 (2009)

    Article  Google Scholar 

  28. He, J.: Complex of shikonin and β-cyclodextrins by using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 63, 249–255 (2009)

    Article  CAS  Google Scholar 

  29. He, J., Li, W.J.: Complex formation of cinnamaldehyde-methyl-β-cyclodextrin and muscone-methyl-β-cyclodextrin by supercritical carbon dioxide processing and sealed heating method. J. Incl. Phenom. Macrocycl. Chem. 63, 61–68 (2009)

    Article  CAS  Google Scholar 

  30. He, J., Li, W.J.: Preparation of borneol–methyl-β-cyclodextrin inclusion complex by supercritical carbon dioxide processing. J. Incl. Phenom. Macrocycl. Chem. 65, 249 (2009)

    Article  CAS  Google Scholar 

  31. Reilly, J.T., Kim, C.H., Clark, A.B., Donohue, M.D.: High pressure vapor-liquid equilibria of aromatic hydrocarbons with carbon dioxide and ethane. Fluid Phase Equilib. 73, 81–107 (1992)

    Article  CAS  Google Scholar 

  32. Cortesi, A., Kikic, I., Alessi, P., Turtoi, G., Garnier, S.: Effect of chemical structure on the solubility of antioxidants in supercritical carbon dioxide: experimental data and correlation. J. Supercrit. Fluids 14, 139–144 (1999)

    Article  CAS  Google Scholar 

  33. Yuan, Y.S., Wang, C.W., Zhou, X.Y.: The study for the active component in rhizome acori graminei. Chin. Tradit. Herb. Drugs 13(9), 3–4 (1982)

    Google Scholar 

Download references

Acknowledgments

This study is supported by Molecular Science Center of Institute of Chemistry, The Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J. Complex between modified β-cyclodextrins and three components of traditional Chinese medicine in supercritical carbon dioxide medium. J Incl Phenom Macrocycl Chem 68, 399–410 (2010). https://doi.org/10.1007/s10847-010-9799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9799-z

Keywords

Navigation