Skip to main content
Log in

Preparation of borneol–methyl-β-cyclodextrin inclusion complex by supercritical carbon dioxide processing

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work, the complex of borneol–methyl-β-cyclodextrin was prepared both by supercritical carbon dioxide processing and by the sealed heating treatment at mild pressure and temperature. An amorphous complex was obtained by the sealed heating treatment. A crystalline inclusion complex was obtained by the supercritical carbon dioxide processing. The crystalline complex is more stable than the amorphous complex. The apparent aqueous solubility of borneol could be enhanced about 70 times by complexation with methyl-β-cyclodextrin.

Graphical Abstract

In this work, a 1:1 crystalline inclusion complex between borneol and methyl-β-cyclodextrin was obtained by supercritical carbon dioxide processing at temperature about 100 °C and pressure about 100 bar. This inclusion complex is more stable than the amorphous complex prepared by the sealed heating method. The apparent aqueous solubility of borneol could be enhanced about 70 times by complexation with methyl-β-cyclodextrin. The possible complex structure is shown below:

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Granger, R.E., Campbell, E.L., Johnston, G.A.R.: (+)- and (−)-borneol: efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABAA receptors. Biochem. Pharmacol. 69, 1101–1111 (2005). doi:10.1016/j.bcp.2005.01.002

    Article  CAS  Google Scholar 

  2. Bhatia, S.P., McGinty, D., Letizia, C.S., Api, A.M.: Fragrance material review on l-borneol. Food Chem. Toxicol. 46(Suppl 1), s81–s84 (2008). doi:10.1016/j.fct.2008.06.054

    Google Scholar 

  3. Bhatia, S.P., Letizia, C.S., Api. A.M.: Fragrance material review on borneol. Food Chem. Toxicol. 46(Suppl 1), s77–s80, (2008). doi:10.1016/j.fct.2008.06.031

    CAS  Google Scholar 

  4. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6(2), 43 (2005). doi:10.1208/pt060243

    Article  Google Scholar 

  5. Song, H.T., Guo, T., Zhao, M.H., Zhang, R.H., Li, X., Bi, K.S.: Studies on physicochemical properties of borneol beta-cyclodextrin inclusion complex. J. Shenyang Pharm. Univ. 19, 249–252 (2002)

    CAS  Google Scholar 

  6. Yuan, M., Zhao, R.Y., Wang, P., Zhang, Z.L.: Study on the borneol–β-cyclodextrin inclusion complex. Qilu Pharm. Aff. 26, 242–245 (2007)

    Google Scholar 

  7. Wang, J., Zhang, T.J., Liao, M.L.: Study on the inclusion complex of borneol with hydroxypropyl-β-cyclodextrin. Tianjin J. Tradit. Chin. Med. 24, 150–152 (2007)

    CAS  Google Scholar 

  8. Van Hees, T., Piel, G., Evrared, B., Otte, X., Thunnus, L., Delattre, L.: Application of supercritical carbon dioxide for the preparation of a piroxicam-β-cyclodextrin inclusion compound. Pharm. Res. 16, 1864–1870 (1999). doi:10.1023/A:1018955410414

    Article  Google Scholar 

  9. Charoenchaitrakool, M., Dehghani, F., Foster, N.R.: Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-cyclodextrin. Int. J. Pharm. 239, 103–112 (2002). doi:10.1016/S0378-5173(02)00078-9

    Article  CAS  Google Scholar 

  10. Junco, S., Casimiro, T., Ribeiro, N., den Ponte, M.N., Marques, H.C.: A comparative study of naproxen-beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 44, 117–121 (2002). doi:10.1023/A:1023022008337

    Article  CAS  Google Scholar 

  11. Lai, S., Locci, E., Piras, A., Porcedda, S., Lai, A., Marongiu, B.: Imazalil–cyclomaltoheptaose (β-cyclodextrin) inclusion complex: preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization. Carbohydr. Res. 338, 2227–2232 (2003). doi:10.1016/S0008-6215(03)00358-6

    Article  CAS  Google Scholar 

  12. Locci, E., Lai, S., Piras, A., Marongiu, B., Lai, A.: 13C-CPMAS and 1H-NMR study of the inclusion complexes of β-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem. Biodivers. 1, 1354 (2004). doi:10.1002/cbdv.200490098

    Article  CAS  Google Scholar 

  13. Bandia, N., Weib, W., Robertsc, C.B., Kotrac, L.P., Kompella, U.B.: Preparation of budesonide and indomethacin-hydroxypropyl-cyclodextrin (HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur. J. Pharm. Sci. 23, 159–168 (2004). doi:10.1016/j.ejps.2004.06.007

    Article  Google Scholar 

  14. Rodier, E., Lochard, H., Sauceau, M., Letourneau, J.J., Freiss, B., Fages, J.: A three step supercritical process to improve the dissolution rate of eflucimibe. Eur. J. Pharm. Sci. 26, 184–193 (2005). doi:10.1016/j.ejps.2005.05.011

    Article  CAS  Google Scholar 

  15. Shehatta, I., Al-Marzouqi, A.H., Jobe, B., Dowaidar, A.: Enhancement of aqueous solubility of itraconazole by complexation with cyclodextrins using supercritical carbon dioxide. Can. J. Chem. 83, 1833–1838 (2005). doi:10.1139/v05-181

    Article  CAS  Google Scholar 

  16. Al-Marzouqi, A.H., Shehatta, I., Jobe, B., Dowaidar, A.: Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. J. Pharm. Sci. 95, 292–304 (2006). doi:10.1002/jps.20535

    Article  CAS  Google Scholar 

  17. Wang, B., He, J., Sun, D.H., Zhang, R., Han, B.X.: Utilization of supercritical carbon dioxide for preparation of 3-hydroxyflavone and β-cyclodextrin complex. J. Incl. Phenom. Macrocycl. Chem. 55, 37–40 (2006). doi:10.1007/s10847-005-9015-8

    Article  CAS  Google Scholar 

  18. Al-Marzouqi, A.H., Jobe, B., Dowaidar, A., Maestrelli, F., Murab, P.: Evaluation of supercritical fluid technology as preparative technique of benzocaine–cyclodextrin complex comparison with conventional methods. J. Pharm. Biomed. 43, 566–574 (2007). doi:10.1016/j.jpba.2006.08.019

    Article  CAS  Google Scholar 

  19. Turk, M., Upper, G., Steurenthaler, M., Hussein, K., Wahl, M.A.: Complex formation of ibuprofen and β–cyclodextrin by controlled particle deposition (CPD) using SC-CO2. J. Supercrit. Fluids 39, 435–443 (2007). doi:10.1016/j.supflu.2006.02.009

    Article  Google Scholar 

  20. Bounaceur, A., Rodier, E., Fages, J.: Maturation of ketoprofen/β-cyclodextrin mixture with supercritical carbon dioxide. J. Supercrit. Fluids 41, 429–439 (2007). doi:10.1016/j.supflu.2006.11.004

    Article  CAS  Google Scholar 

  21. Hussein, K., Turk, M., Wahl, M.A.: Comparative evaluation of ibuprofen/β-cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods. Pharm. Res. 24, 585–592 (2007). doi:10.1007/s11095-006-9177-0

    Article  CAS  Google Scholar 

  22. Al-Marzouqi, A.H., Jobe, B., Corti, G., Cirri, M., Mura, P.: Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Incl. Phenom. Macrocycl. Chem. 57, 223–231 (2007). doi:10.1007/s10847-006-9192-0

    Article  CAS  Google Scholar 

  23. Moribe, K., Fujito, T., Tozuka, Y., Yamamoto, K.: Solubility-dependent complexation of active pharmaceutical ingredients with trimethyl-β-cyclodextrin under supercritical fluid condition. J. Incl. Phenom. Macrocycl. Chem. 57, 289–295 (2007). doi:10.1007/s10847-006-9175-1

    Article  CAS  Google Scholar 

  24. Lee, S.Y., Jung, In-II, Kim, J.K., Lim, G.B., Ryu, J.H.: Preparation of itraconazole/HP-B-CD inclusion complexes using supercritical aerosol solvent extraction system and their dissolution characteristics. J. Supercrit. Fluids 44, 400–408 (2008). doi:10.1016/j.supflu.2007.09.006

    Article  CAS  Google Scholar 

  25. Al-Marzouqi, A.H., Solieman, A., Shehadi, I., Adem, A.: Influence of the preparation method on the physicochemical properties of econazole-β-cyclodextrin complexes. J. Incl. Phenom. Macrocycl. Chem. 60, 85–93 (2008). doi:10.1007/s10847-007-9356-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Molecular Science Center of Institute of Chemistry, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Li, W. Preparation of borneol–methyl-β-cyclodextrin inclusion complex by supercritical carbon dioxide processing. J Incl Phenom Macrocycl Chem 65, 249–256 (2009). https://doi.org/10.1007/s10847-009-9575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9575-0

Keywords

Navigation