Skip to main content
Log in

Acyclic oligopyrroles as building blocks of supramolecular assemblies

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The supramolecular chemistry of acyclic oligopyrrole derivatives mainly reported by the author’s group in the last four years has been summarized in this review. The author has demonstrated the “first step” to construct the new materials and concepts based on the new molecular systems consisting of pyrrole rings, which form the complexes, assemblies, and organized structures, by using noncovalent interactions such as metal coordination, hydrogen bonding, and π–π interaction. Acyclic π-conjugated oligopyrroles have exhibited not only host–guest binding behaviors in solutions but also the formation of, for example, (i) metal coordination polymers to give emissive colloidal spheres, (ii) solid-state assemblies of acyclic π-conjugated anion receptors and their anion complexes, (iii) anion-responsive supramolecular gels from the receptors with aliphatic chains, and (iv) solvent-assisted organized structures like vesicles derived from amphiphilic anion receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fischer, H., Orth, H.: Die Chemie des Pyrrols. Akademische Verlagsgesellschaft M. B. H, Leipzig (1934)

    Google Scholar 

  2. Kadish, K.M., Smith, K.M., Guilard, R. (eds.): The Porphyrin Handbook. Academic Press, San Diego (2000)

    Google Scholar 

  3. Tsoucaris, G. (ed.): Current Challenges on Large Supramolecular Assemblies. NATO Science Series. Kluwer, Dordrecht (1999)

    Google Scholar 

  4. Ciferri, A. (ed.): Supramolecular Polymers. Marcel Dekker, New York, Basel (2000)

    Google Scholar 

  5. Ozin, G.A., Arsenault, A.C.: Nanochemistry: A Chemical Approach to Nanomaterials. RSC, Cambridge (2005)

    Google Scholar 

  6. Würthner, F. (ed.): Supramolecular Dye Chemistry. Topics in Current Chemistry. Springer Verlag, Berlin (2005)

    Google Scholar 

  7. Shimizu, T., Matsuda, M., Minamikawa, H.: Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1443 (2005). doi:10.1021/cr030072j

    CAS  Google Scholar 

  8. Hoeben, F.J.M., Jonkheijm, P., Meijer, E.W., Schenning, A.P.H.J.: About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005). doi:10.1021/cr030070z

    CAS  Google Scholar 

  9. Maeda, H.: Supramolecular chemistry of acyclic oligopyrroles. Eur. J. Org. Chem. 5313–5325 (2007), and references therein. doi:10.1002/ejoc.200700382

  10. Sauvage, J.-P. (ed.): Transition Metals in Supramolecular Chemistry. Wiley, Chichester (1999)

    Google Scholar 

  11. Fujita, M., Umemoto, K., Yoshizawa, M., Fujita, N., Kusukawa, T., Biradha, K.: Molecular paneling via coordination. Chem. Commun. (Camb.) 509–518 (2001). doi:10.1039/b008684n

  12. Seidel, S.R., Stang, P.J.: High-symmetry coordination cages via self-assembly. Acc. Chem. Res. 35, 972–983 (2002). doi:10.1021/ar010142d

    CAS  Google Scholar 

  13. Kitagawa, S., Kitaura, R., Noro, S.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004). doi:10.1002/anie.200300610

    CAS  Google Scholar 

  14. Dobrawa, R., Würthner, F.: Metallosupramolecular approach toward functional coordination polymers. J. Polym. Sci. A 43, 4981–4995 (2005). doi:10.1002/pola.20997

    CAS  Google Scholar 

  15. Schubert, U.S., Newkome, G.R., Manners, I. (eds.): Metal-Containing and Metallosupramolecular Polymers and Materials, vol. 928. ACS Symposium Series, American Chemical Society, Washington DC (2006)

    Google Scholar 

  16. Oh, M., Mirkin, C.A.: Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438, 651–654 (2005). doi:10.1038/nature04191

    CAS  Google Scholar 

  17. Oh, M., Mirkin, C.A.: Ion exchange as a way of controlling the chemical compositions of nano- and microparticles made from infinite coordination polymers. Angew. Chem. Int. Ed. 45, 5492–5494 (2006). doi:10.1002/anie.200601918

    CAS  Google Scholar 

  18. Würthner, F., Stepanenko, V., Sautter, A.: Rigid-rod metallosupramolecular polymers of dendronized diazadibenzoperylene dyes. Angew. Chem. Int. Ed. 45, 1939–1942 (2006). doi:10.1002/anie.200503717

    Google Scholar 

  19. Falk, H.: The Chemistry of Linear and Oligopyrroles and Bile Pigments. Springer-Verlag, Vienna (1989)

    Google Scholar 

  20. Brückner, C., Zhang, Y., Rettig, S.J., Dolphin, D.: Synthesis, derivatization and structural characterization of octahedral tris(5-phenyl-4, 6-dipyrrinato) complexes of cobalt(III) and iron(III). Inorg. Chim. Acta 263, 279–286 (1997). doi:10.1016/S0020-1693(97)05700-9

    Google Scholar 

  21. Zhang, Y., Thompson, A., Rettig, S.J., Dolphin, D.: The use of dipyrromethene ligands in supramolecular chemistry. J. Am. Chem. Soc. 120, 13537–13538 (1998). doi:10.1021/ja9834982

    CAS  Google Scholar 

  22. Thompson, A., Rettig, S.J., Dolphin, D.: Self-assembly of novel trimers using dipyrromethene ligands. Chem. Commun. (Camb.) 631–632 (1999). doi:10.1039/a809192g

  23. Thompson, A., Dolphin, D.: Nuclear magnetic resonance studies of helical dipyrromethene-zinc complexes. Org. Lett. 2, 1315–1318 (2000). doi:10.1021/ol000053l

    CAS  Google Scholar 

  24. Chen, Q., Zhang, Y., Dolphin, D.: Synthesis and self-assembly of novel tetra- and hexapyrroles containing dipyrrins linked by a sulfur bridge at the β-position. Tetrahedron Lett. 43, 8413–8416 (2002). doi:10.1016/S0040-4039(02)01958-5

    CAS  Google Scholar 

  25. Wood, T.E., Thompson, A.: Advances in the chemistry of dipyrrins and their complexes. Chem. Rev. 107, 1831–1861 (2007). doi:10.1021/cr050052c

    CAS  Google Scholar 

  26. Halper, S.R., Cohen, S.M.: Synthesis, structure, and spectroscopy of phenylacetylenylene rods incorporating meso-substituted dipyrrin ligands. Chem. Eur. J. 9, 4661–4669 (2003). doi:10.1002/chem.200305041

    CAS  Google Scholar 

  27. Halper, S.R., Cohen, S.M.: Heterometallic metal-organic frameworks based on tris(dipyrrinato) coordination complexes. Inorg. Chem. 44, 486–488 (2005). doi:10.1021/ic048289z

    CAS  Google Scholar 

  28. Murphy, D.L., Malachowski, M.R., Campana, C.F., Cohen, S.M.: A chiral, heterometallic metal-organic framework derived from a tris(chelate) coordination complex. Chem. Commun. (Camb.) 5506–5508 (2005). doi:10.1039/b510915a

  29. Yu, L., Muthukumaran, K., Sazanovich, I.V., Kirmaier, C., Hindin, E., Diers, J.R., Boyle, P.D., Bocian, D.F., Holten, D., Lindsey, J.S.: Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening Bis(dipyrrinato)metal complex. Inorg. Chem. 42, 6629–6647 (2003). doi:10.1021/ic034559m

    CAS  Google Scholar 

  30. Maeda, H., Hashimoto, T., Fujii, R., Hasegawa, M.: Dipyrrin ZnII complexes with functional aryl groups: formation, characterization, and structures in the solid state. J. Nanosci. Nanotechnol. 9, 240–248 (2009). doi:10.1166/jnn.2009.J011

    CAS  Google Scholar 

  31. Maeda, H., Ito, M.: Dipyrrin-porphyrin hybrids: potential π-conjugated platform to fabricate coordination oligomers. Chem. Lett. 34, 1150–1151 (2005). doi:10.1246/cl.2005.1150

    CAS  Google Scholar 

  32. Maeda, H., Hasegawa, M., Hashimoto, T., Kakimoto, T., Nishio, S., Nakanishi, T.: Nanoscale spherical architectures fabricated by metal coordination of multiple dipyrrin moieties. J. Am. Chem. Soc. 128, 10024–10025 (2006). doi:10.1021/ja0637301

    CAS  Google Scholar 

  33. Maeda, H., Hashimoto, T.: Nanoscale metal coordination macrocycles fabricated by using “dimeric” dipyrrins. Chem. Eur. J. 13, 7900–7907 (2007). doi:10.1002/chem.200700444

    CAS  Google Scholar 

  34. Jeffrey, G.A., Saenger, W.: Hydrogen Bonding in Biological Structures. Springer, Berlin (1991)

    Google Scholar 

  35. Whitesides, G.M., Simanek, E.E., Mathias, J.P., Seto, C.T., Chin, D.N., Mannen, M., Gordon, D.M.: Noncovalent synthesis: using physical-organic chemistry to make aggregates. Acc. Chem. Res. 28, 37–44 (1995). doi:10.1021/ar00049a006

    CAS  Google Scholar 

  36. Prins, L.J., Reinhoudt, D.N., Timmerman, P.: Noncovalent synthesis using hydrogen bonding. Angew. Chem. Int. Ed. 40, 2382–2426 (2001). doi:10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G

    CAS  Google Scholar 

  37. Ajayaghosh, A., George, S.J., Schenning, A.P.H.J.: Hydrogen-bonded assemblies of dyes and extended π-conjugated systems. In: Würthner, F. (ed.) Supramolecular Dye Chemistry. Topics in Current Chemistry, vol. 258, pp. 83–118. Springer-Verlag, Berlin (2005)

    Google Scholar 

  38. Sessler, J.L., Berthon-Gelloz, G., Gale, P.A., Camiolo, S., Anslyn, E.V., Anzenbacher Jr., P., Furuta, H., Kirkovits, G.J., Lynch, V.M., Maeda, H., Morosini, P., Scherer, M., Shriver, J., Zimmerman, R.S.: Oligopyrrole-based solid state self-assemblies. Polyhedron 22, 2963–2983 (2003). doi:10.1016/S0277-5387(03)00436-4

    CAS  Google Scholar 

  39. Sessler, J.L., Weghorn, S.J., Hiseada, Y., Lynch, V.: Hexaalkyl terpyrrole: a new building block for the preparation of expanded porphyrins. Chem. Eur. J. 1, 56–67 (1995). doi:10.1002/chem.19950010110

    CAS  Google Scholar 

  40. Scherer, M., Sessler, J.L., Gebauer, A., Lynch, V.: Synthesis and properties of pyrrole-substituted cyclopentadienes. J. Org. Chem. 62, 7877–7881 (1997). doi:10.1021/jo970818b

    CAS  Google Scholar 

  41. Scherer, M., Sessler, J.L., Moini, M., Gebauer, A., Lynch, V.M.: Self-assembly of pyrrole-ferrocene hybrids, determined inter alia by a new chemically induced electrospray mass spectrometry technique. Chem. Eur. J. 4, 152–158 (1998). doi:10.1002/(SICI)1521-3765(199801)4:1<152::AID-CHEM152>3.0.CO;2-E

    CAS  Google Scholar 

  42. Schmuck, C., Wienand, W.: Highly stable self-assembly in water: ion pair driven dimerization of a guanidiniocarbonyl pyrrole carboxylate zwitterion. J. Am. Chem. Soc. 125, 452–459 (2003). doi:10.1021/ja028485+

    CAS  Google Scholar 

  43. Wang, Y., Fu, H., Peng, A., Zhao, Y., Ma, J., Ma, Y., Yao, J.: Distinct nanostructures from isomeric molecules of bis(iminopyrrole) benzenes: effects of molecular structures on nanostructural morphologies. Chem. Commun. (Camb.) 1623–1625 (2007). doi:10.1039/b701327b

  44. Oddo, B., Dainotti, C.: Syntheses in the pyrrole group. V. pyrrolic α-, β- and γ-diketones. Gazz. Chim. Ital. 42, 716–726 (1912)

    CAS  Google Scholar 

  45. Stark, W.M., Baker, M.G., Leeper, F.J., Raithby, P.R., Battersby, A.R.: Biosynthesis of porphyrins and related macrocycles. Part 30. Synthesis of the macrocycle of the spiro system proposed as an intermediate generated by cosynthetase. J. Chem. Soc. Perkin Trans. 1, 1187–1201 (1988). doi:10.1039/p19880001187

    Google Scholar 

  46. Maeda, H., Kusunose, Y., Terasaki, M., Ito, Y., Fujimoto, C., Fujii, R., Nakanishi, T.: Micro- and nanometer-scale porous, fibrous, and sheet architectures fabricated by supramolecular assemblies of dipyrrolyldiketones. Chem. Asian J. 2, 350–357 (2007). doi:10.1002/asia.200600379

    CAS  Google Scholar 

  47. Maeda, H., Hasegawa, M., Ueda, A.: Hydrogen bonding self-assemblies with 1-D linear, dimeric and hexagonal nanostructures of meso-pyridyl-substituted dipyrromethanes. Chem. Commun. (Camb.) 2726–2728 (2007). doi:10.1039/b703236f

  48. Bianchi, A., Bowman-James, K., García-España, E. (eds.): Supramolecular Chemistry of Anions. Wiley-VCH, New York (1997)

    Google Scholar 

  49. Singh, R.P., Moyer, B.A. (eds.): Fundamentals and Applications of Anion Separations. Kluwer Academic/Plenum Publishers, New York (2004)

    Google Scholar 

  50. Sessler, J.L., Gale, P.A., Cho, W.-S.: Anion Receptor Chemistry. RSC, Cambridge (2006)

    Google Scholar 

  51. Vilar, R. (ed.): Recognition of Anions: Structure and Bonding. Springer-Verlag, Berlin (2008)

    Google Scholar 

  52. Schmidtchen, F.P., Berger, M.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997). doi:10.1021/cr9603845

    Google Scholar 

  53. Beer, P.D., Gale, P.A.: Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516 (2001). doi:10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P

    CAS  Google Scholar 

  54. Sessler, J.L., Camiolo, S., Gale, P.A.: Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev. 240, 17–55 (2003)

    CAS  Google Scholar 

  55. Martínez-Máñez, R., Sancenón, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003). doi:10.1021/cr010421e

    Google Scholar 

  56. Gale, P.A.: Amidopyrroles: from anion receptors to membrane transport agents. Chem. Commun. (Camb.) 3761–3772 (2005). doi:10.1039/b504596g

  57. Gale, P.A.: Structural and molecular recognition studies with acyclic anion receptors. Acc. Chem. Res. 39, 465–475 (2006). doi:10.1021/ar040237q

    CAS  Google Scholar 

  58. Williams, D.H., Cox, J.P.L., Doig, A.J., Gardner, M., Gerhard, U., Kaye, P.T., Lal, A.R., Nicholls, I.A., Salter, C.J., Mitchell, R.C.: Toward the semiquantitative estimation of binding constants. Guides for peptide-peptide binding in aqueous solution. J. Am. Chem. Soc. 113, 7020–7030 (1991). doi:10.1021/ja00018a047

    CAS  Google Scholar 

  59. Searle, M.S., Williams, D.H., Gerhard, U.: Partitioning of free energy contributions in the estimation of binding constants: residual motions and consequences for amide–amide hydrogen bond strengths. J. Am. Chem. Soc. 114, 10697–10704 (1992). doi:10.1021/ja00053a003

    CAS  Google Scholar 

  60. Verdejo, B., Aguilar, J., Doménech, A., Miranda, C., Navarro, P., Jiménez, H.R., Soriano, C., García-España, E.: Binuclear Cu2+ complex mediated discrimination between l-glutamate and l-aspartate in water. Chem. Commun. (Camb.) 3086–3088 (2005). doi:10.1039/b503417e

  61. Gunnlaugsson, T., Kruger, P.E., Jensen, P., Tierney, J., Ali, H.D.P., Hussey, G.M.: Colorimetric “naked eye” sensing of anions in aqueous solution. J. Org. Chem. 70, 10875–10878 (2005). doi:10.1021/jo0520487

    CAS  Google Scholar 

  62. Nagai, K., Maeda, K., Takeyama, Y., Sakajiri, K., Yashima, E.: Helicity induction and chiral amplification in a poly(phenylacetylene) bearing N,N-diisopropylaminomethyl groups with chiral acids in water. Macromolecules 38, 5444–5451 (2005). doi:10.1021/ma0507241

    CAS  Google Scholar 

  63. Sessler, J.L., Cyr, M.J., Lynch, V., McGhee, E., Ibers, J.A.: Synthetic and structural studies of sapphyrin, a 22-π-electron pentapyrrolic “expanded porphyrin”. J. Am. Chem. Soc. 112, 2810–2813 (1990). doi:10.1021/ja00163a059

    CAS  Google Scholar 

  64. Shionoya, M., Furuta, H., Lynch, V., Harriman, A., Sessler, J.L.: Diprotonated sapphyrin: a fluoride selective halide anion receptor. J. Am. Chem. Soc. 114, 5714–5722 (1992). doi:10.1021/ja00040a034

    CAS  Google Scholar 

  65. Sessler, J.L., Davis, J.: Sapphyrins: versatile anion binding agents. Acc. Chem. Res. 34, 989–997 (2001). doi:10.1021/ar980117g

    CAS  Google Scholar 

  66. Gale, P.A., Sessler, J.L., Král, V., Lynch, V.: Calix[4]pyrroles: old yet new anion-binding agents. J. Am. Chem. Soc. 118, 5140–5141 (1996). doi:10.1021/ja960307r

    CAS  Google Scholar 

  67. Gale, P.A., Sessler, J.L., Král, V.: Calixpyrroles. Chem. Commun. (Camb.) 1–8 (1998). doi:10.1039/a706280j

  68. Sessler, J.L., Gross, D.E., Cho, W.-S., Lynch, V.M., Schmidtchen, F.P., Bates, G.W., Light, M.E., Gale, P.A.: Calix[4]pyrrole as a chloride anion receptor: solvent and counter cation effects. J. Am. Chem. Soc. 128, 12281–12288 (2006). doi:10.1021/ja064012h

    CAS  Google Scholar 

  69. Black, C.B., Andrioletti, B., Try, A.C., Ruiperez, C., Sessler, J.L.: Dipyrrolylquinoxalines: efficient sensors for fluoride anion in organic solution. J. Am. Chem. Soc. 121, 10438–10439 (1999). doi:10.1021/ja992579a

    CAS  Google Scholar 

  70. Sessler, J.L., Maeda, H., Mizuno, T., Lynch, V.M., Furuta, H.: Quinoxaline-oligopyrroles: improved pyrrole-based anion receptors. Chem. Commun. (Camb.) 862–863 (2002). doi:10.1039/b111708d

  71. Sessler, J.L., An, D., Cho, W.-S., Lynch, V., Marquez, M.: Calix[n]bisdipyrrolylbenzenes: synthesis, characterization, and preliminary anion binding studies. Chem. Eur. J. 11, 2001–2011 (2005). doi:10.1002/chem.200400894

    CAS  Google Scholar 

  72. Vega, I.E.D., Camiolo, S., Gale, P.A., Hursthouse, M.B., Light, M.E.: Anion complexation properties of 2,2′-bisamidodipyrrolylmethanes. Chem. Commun. (Camb.) 1686–1687 (2003). doi:10.1039/b303532h

  73. Vega, I.E.D., Gale, P.A., Hursthouse, M.B., Light, M.E.: Anion binding properties of 5,5′-dicarboxamido-dipyrrolylmethanes. Org. Biomol. Chem. 2, 2935–2941 (2004). doi:10.1039/b409115a

    Google Scholar 

  74. Vega, I.E.D., Gale, P.A., Light, M.E., Leob, S.J.: NH vs. CH hydrogen bond formation in metal–organic anion receptors containing pyrrolylpyridine ligands. Chem. Commun. (Camb.) 4913–4915 (2005). doi:10.1039/b510506d

  75. Schmuck, C.: Side chain selective binding of N-acetyl-α-amino acid carboxylates by a 2-(guanidiniocarbonyl)pyrrole receptor in aqueous solvents. Chem. Commun. (Camb.) 843–844 (1999). doi:10.1039/a901126i

  76. Schmuck, C., Geiger, L.: Carboxylate binding by guanidiniocarbonyl pyrroles: from self-assembly to peptide receptors. Curr. Org. Chem. 7, 1485–1502 (2003). doi:10.2174/1385272033486387

    CAS  Google Scholar 

  77. Schmuck, C., Geiger, L.: Efficient complexation of n-acetyl amino acid carboxylates in water by an artificial receptor: unexpected cooperativity in the binding of glutamate but not aspartate. J. Am. Chem. Soc. 127, 10486–10487 (2005). doi:10.1021/ja052699k

    CAS  Google Scholar 

  78. Maeda, H., Ito, Y., Kusunose, Y., Nakanishi, T.: Dipyrrolylpyrazoles: anion receptors in protonated form and efficient building blocks for organized structures. Chem. Commun. (Camb.) 1136–1138 (2007). doi:10.1039/b615787d

  79. Maeda, H., Kusunose, Y.: Dipyrrolyldiketone difluoroboron complexes: novel anion sensors with C–H···Xinteractions. Chem. Eur. J. 11, 5661–5666 (2005). doi:10.1002/chem.200500627

    CAS  Google Scholar 

  80. Maeda, H., Terasaki, M., Haketa, Y., Mihashi, Y., Kusunose, Y.: BF2 complexes of α-alkyl-substituted dipyrrolyldiketones as acyclic anion receptors. Org. Biomol. Chem. 6, 433–436 (2008). doi:10.1039/b718317h

    CAS  Google Scholar 

  81. Maeda, H., Kusunose, Y., Mihashi, Y., Mizoguchi, T.: BF2 complexes of β-tetraethyl-substituted dipyrrolyldiketones as anion receptors: potential building subunits for oligomeric systems. J. Org. Chem. 72, 2616–2621 (2007). doi:10.1021/jo062660d

    Google Scholar 

  82. Maeda, H., Ito, Y.: BF2 complex of fluorinated dipyrrolyldiketone: a new class of efficient receptor for acetate anions. Inorg. Chem. 45, 8205–8210 (2006). doi:10.1021/ic0608703

    CAS  Google Scholar 

  83. Fujimoto, C., Kusunose, Y.: CH···anion interaction in BF2 complexes of C3-bridged oligopyrroles. H. Maeda. J. Org. Chem. 71, 2389–2394 (2006). doi:10.1021/jo052511f

    CAS  Google Scholar 

  84. Maeda, H., Haketa, Y., Nakanishi, T.: Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels. J. Am. Chem. Soc. 129, 13661–13674 (2007). doi:10.1021/ja074435z

    CAS  Google Scholar 

  85. Maeda, H., Eifuku, N.: Receptors with mono-alkoxy-substituted aryl rings have also been synthesized: Alkoxy-substituted derivatives of π-conjugated acyclic anion receptors: effects of substituted positions. Chem. Lett. 38, 208–209 (2009). doi:10.1246/cl.2009.208

    CAS  Google Scholar 

  86. Maeda, H., Haketa, Y.: Selective iodinated dipyrrolyldiketone BF2 complexes as potential building units for oligomeric systems. Org. Biomol. Chem. 6, 3091–3095 (2008). doi:10.1039/b806161k

    CAS  Google Scholar 

  87. Maeda, H., Mihashi, Y., Haketa, Y.: Heteroaryl-substituted C3-bridged oligopyrroles: potential building subunits of anion-responsive π-conjugated oligomers. Org. Lett. 10, 3179–3182 (2008). doi:10.1021/ol801014z

    CAS  Google Scholar 

  88. Maeda, H., Bando, Y., Haketa, Y., Seki, S., Tohnai, N.: Recently, we have found the formation of multicrystalline systems of 9a. (to be submitted)

  89. Maeda, H., Haketa, Y., Bando, Y., Sakamoto, S.: For single-crystal structures of β-ethyl-substituted receptor 9d: Synthesis, properties, and solid-state assemblies of β-alkyl-substituted dipyrrolyldiketone BF2 complexes. Synth. Met. 159 (2009). doi:10.1016/j.synthmet.2009.01.004

  90. Maeda, H., Haketa, Y., Terashima, Y., Shimosugi, S., Ohta, K.: Effects of counter cations have also been examined. (to be submitted)

  91. Maeda, H., Ito, Y., Haketa, Y., Eifuku, N., Lee, E., Lee, M., Hashishin, T., Kaneko, K.: Solvent-assisted organized structures based on amphiphilic anion-responsive π-conjugated systems. Chem. Eur. J. 15, (2009). doi:10.1002/chem.200802152

  92. Maeda, H., Fujii, Y., Mihashi, Y.: Diol-substituted boron complexes of dipyrrolyl diketones as anion receptors and covalently linked ‘pivotal’ dimers. Chem. Commun. (Camb.) 4285–4287 (2008). doi:10.1039/b806361c

  93. Sanchez-Queseda, J., Seel, C., Prados, P., de Mendoza, J.: Anion helicates: double strand helical self-assembly of chiral bicyclic guanidinium dimers and tetramers around sulfate templates. J. Am. Chem. Soc. 118, 277–278 (1996). doi:10.1021/ja953243d

    Google Scholar 

  94. Keegan, K., Kruger, P.E., Nieuwenhuyzen, M., O’Brien, J., Martin, N.: Anion directed assembly of a dinuclear double helicate. Chem. Commun. (Camb.) 2192–2193 (2001). doi:10.1039/b106981k

  95. Coles, S.J., Frey, J.G., Gale, P.A., Hursthouse, M.B., Light, M.E., Navakhun, K., Thomas, G.L.: Anion-directed assembly: the first fluoride-directed double helix. Chem. Commun. (Camb.) 568–569 (2003). doi:10.1039/b210847j

  96. Coles, S.J., Gale, P.A., Hursthouse, M.B., Light, M.E., Warriner, C.N.: Crystallographic and solution anion binding studies of bis-amidofurans and thiophenes. Supramol. Chem. 16, 469–486 (2004). doi:10.1080/10610270410001713303

    CAS  Google Scholar 

  97. Curiel, D., Cowley, A., Beer, P.D.: Indolocarbazoles: a new family of anion sensors. Chem. Commun. (Camb.) 236–238 (2005). doi:10.1039/b412363h

  98. Brook, S.J., Evans, L.S., Gale, P.A., Hursthouse, M.B., Light, M.E.: ‘Twisted’ isophthalamide analogues. Chem. Commun. (Camb.) 734–735 (2005). doi:10.1039/b413654c

  99. Gale, P.A., Light, M.E., McNally, B., Navakhun, K., Sliwinski, K.E., Smith, B.D.: Co-transport of H+/Cl by a synthetic prodigiosin mimic. Chem. Commun. (Camb.) 3773–3775 (2005). doi:10.1039/b503906a

  100. Hirose, J., Inoue, K., Sakuragi, H., Kikkawa, M., Minakami, M., Morikawa, T., Iwamoto, H., Hiromi, K.: Anions binding to bilirubin oxidase from Trachyderma tsunodae K-2593. Inorg. Chim. Acta 273, 204–212 (1998). doi:10.1016/S0020-1693(97)06183-5

    CAS  Google Scholar 

  101. Sato, M., Kanamori, T., Kamo, N., Demura, M., Nitta, K.: Stopped-flow analysis on anion binding to blue-form halorhodopsin from Natronobacterium pharaonis: comparison with the anion-uptake process during the photocycle. Biochemistry 41, 2452–2458 (2002). doi:10.1021/bi011788g

    CAS  Google Scholar 

  102. Swager, T.M.: Semiconducting Poly(arylene ethylene)s. In: Diederich, F., Stang, P.J., Tykwinski, R.R. (eds.) Acetylene Chemistry. Wiley-VCH, New York (2005). (Chap. 6)

    Google Scholar 

  103. McQuade, D.T., Pullen, A.E., Swager, T.M.: Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000). doi:10.1021/cr9801014

    CAS  Google Scholar 

  104. Rose, A., Zhu, Z., Madigan, C.F., Swager, T.M., Bulovi’c, V.: Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005). doi:10.1038/nature03438

    CAS  Google Scholar 

  105. Fages, F. (ed.): Low Molecular Mass Gelators, vol. 256, p. 283. Topics in Current Chemistry. Springer-Verlag, Berlin (2005)

    Google Scholar 

  106. Ishi-i, T., Shinkai, S.: Dye-Based Organogels: Stimuli-Responsive Soft Materials Based on One-Dimensional Self-Assembling Aromatic Dyes. In: Würthner, F. (ed.) Supramolecular Dye Chemistry. Topics in Current Chemistry, vol. 258, pp. 119–160. Springer-Verlag, Berlin (2005)

    Google Scholar 

  107. Terech, P., Weiss, R.G.: Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3159 (1997). doi:10.1021/cr9700282

    CAS  Google Scholar 

  108. Abdallah, D.J., Weiss, R.G.: Organogels and low molecular mass organic gelators. Adv. Mater. 12, 1237–1247 (2000). doi:10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B

    CAS  Google Scholar 

  109. Kato, T., Mizoshita, N., Kishimoto, K.: Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006). doi:10.1002/anie.200501384

    CAS  Google Scholar 

  110. van Esch, J.H., Feringa, B.L.: New functional materials based on self-assembling organogels: from serendipity towards design. Angew. Chem. Int. Ed. 39, 2263–2266 (2000). doi:10.1002/1521-3773(20000703)39:13<2263::AID-ANIE2263>3.0.CO;2-V

    Google Scholar 

  111. Kawano, S.-i., Tamaru, S.-i., Fujita, N., Shinkai, S.: Sol-gel polycondensation of tetraethyl orthosilicate (TEOS) in sugar-based porphyrin organogels: inorganic conversion of a sugar-directed porphyrinic fiber library through Sol-gel transcription processes. Chem. Eur. J. 10, 343–351 (2004). doi:10.1002/chem.200305042

    CAS  Google Scholar 

  112. Shirakawa, M., Fujita, N., Shinkai, S.: A stable single piece of unimolecularly π-stacked porphyrin aggregate in a thixotropic low molecular weight gel: a one-dimensional molecular template for polydiacetylene wiring up to several tens of micrometers in length. J. Am. Chem. Soc. 127, 4164–4165 (2005). doi:10.1021/ja042869d

    CAS  Google Scholar 

  113. Kitahara, T., Shirakawa, M., Kawano, S.-i., Beginn, U., Fujita, N., Shinkai, S.: Creation of a mixed-valence state from one-dimensionally aligned ttf utilizing the self-assembling nature of a low molecular-weight gel. J. Am. Chem. Soc. 127, 14980–14981 (2005). doi:10.1021/ja0552038

    CAS  Google Scholar 

  114. Yagai, S., Nakajima, T., Kishikawa, K., Kohmoto, S., Karatsu, T., Kitamura, A.: Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J. Am. Chem. Soc. 127, 11134–11139 (2005). doi:10.1021/ja052645a

    CAS  Google Scholar 

  115. Maeda, H.: Recently, the author has summarized the recent progress of the anion-responsive supramolecular gels: Anion-responsive supramolecular gels. Chem. Eur. J. 14, 11274–11282 (2008). doi:10.1002/chem.200801333

    CAS  Google Scholar 

  116. Balaban, T.S., Tamiaki, H., Holzwarth, A.R.: Chlorins Programmed for Self-Assembly. In: Würthner, F. (ed.) Supramolecular Dye Chemistry. Topics in Current Chemistry, vol. 258, pp. 1–38. Springer-Verlag, Berlin (2005)

    Google Scholar 

  117. Webb, J.E.A., Crossley, M.J., Turner, P., Thordarson, P.: Pyromellitamide aggregates and their response to anion stimuli. J. Am. Chem. Soc. 129, 7155–7162 (2007). doi:10.1021/ja0713781

    CAS  Google Scholar 

  118. Džolić, Z., Cametti, M., Cort, A.D., Mandolini, L., Žinić, M.: Fluoride-responsive organogelator based on oxalamide-derived anthraquinone. Chem. Commun. (Camb.) 3535–3537 (2007). doi:10.1039/b707466b

  119. Wang, C., Zhang, D., Zhu, D.: A chiral low-molecular-weight gelator based on binaphthalene with two urea moieties: modulation of the CD spectrum after gel formation. Langmuir 23, 1478–1482 (2007). doi:10.1021/la062621x

    Google Scholar 

  120. Yang, H., Yi, T., Zhou, Z., Zhou, Y., Wu, J., Xu, M., Li, F., Huang, C.: Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir 23, 8224–8230 (2007). doi:10.1021/la7005919

    CAS  Google Scholar 

  121. Yamanaka, M., Nakamura, T., Nakagawa, T., Itagaki, H.: Reversible sol–gel transition of a tris–urea gelator that responds to chemical stimuli. Tetrahedron Lett. 48, 8990–8993 (2007). doi:10.1016/j.tetlet.2007.10.090

    CAS  Google Scholar 

  122. Stanley, C.E., Clarke, N., Anderson, K.M., Elder, J.A., Lenthall, J.T., Steed, J.W.: Anion binding inhibition of the formation of a helical organogel. Chem. Commun. (Camb.) 3199–3201 (2006). doi:10.1039/b606373j

  123. Piepenbrock, M.-O.M., Lloyd, G.O., Clarke, N., Steed, J.W.: Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. Chem. Commun. (Camb.) 2644–2646 (2008). doi:10.1039/b804259d

  124. Applegarth, L., Clark, N., Richardson, A.C., Parker, A.D.M., Radosavljevic-Evans, I., Goeta, A.E., Howard, J.A.K., Steed, J.W.: Modular nanometer-scale structuring of gel fibres by sequential self-organization. Chem. Commun. (Camb.) 5423–5425 (2005). doi:10.1039/b511259a

  125. Li, Q., Wang, Y., Li, W., Wu, L.: Structural characterization and chemical response of a Ag-coordinated supramolecular gel. Langmuir 23, 8217–8223 (2007). doi:10.1021/la700364t

    Google Scholar 

  126. Kishimura, A., Yamashita, T., Aida, T.: Phosphorescent organogels via “Metallophilic” interactions for reversible RGB-color switching. J. Am. Chem. Soc. 127, 179–183 (2005). doi:10.1021/ja0441007

    CAS  Google Scholar 

  127. Kim, H.-J., Zin, W.-C., Lee, M.: Anion-directed self-assembly of coordination polymer into tunable secondary structure. J. Am. Chem. Soc. 126, 7009–7014 (2004). doi:10.1021/ja049799v

    CAS  Google Scholar 

  128. Kim, H.-J., Lee, J.-H., Lee, M.: Stimuli-responsive gels from reversible coordination polymers. Angew. Chem. Int. Ed. 44, 5810–5814 (2005). doi:10.1002/anie.200501270

    CAS  Google Scholar 

  129. Voet, D., Voet, J.G.: Biochemistry. Wiley, New York (2004)

    Google Scholar 

  130. Israelachvili, J.N.: Intermolecular and Surface Forces, p. 450. Academic Press, London (1992)

    Google Scholar 

  131. Hamley, I.W.: Introduction to Soft Matter–Polymers, Colloids, Amphiphiles and Liquid Crystals, p. 342. Wiley, Chichester (2000)

    Google Scholar 

  132. Lee, M., Jeong, Y.-S., Cho, B.-K., Oh, N.-K., Zin, W.-C.: Self-assembly of molecular dumbbells into organized bundles with tunables size. Chem. Eur. J. 8, 876–883 (2002). doi:10.1002/1521-3765(20020215)8:4<876::AID-CHEM876>3.0.CO;2-M

    CAS  Google Scholar 

  133. Yoo, Y.-S., Choi, J.-H., Song, J.-H., Oh, N.-K., Zin, W.-C., Park, S., Chang, T., Lee, M.: Self-assembling molecular trees containing octa-p-phenylene: from nanocrystals to nanocapsules. J. Am. Chem. Soc. 126, 6294–6300 (2004). doi:10.1021/ja048856h

    CAS  Google Scholar 

  134. Jin, L.-Y., Ahn, J.-H., Lee, M.: Shape-persistent macromolecular disks from reactive supramolecular rod bundles. J. Am. Chem. Soc. 126, 12208–12209 (2004). doi:10.1021/ja0465552

    CAS  Google Scholar 

  135. Hong, D.-J., Lee, E., Lee, M.: Nanofibers from self-assembly of an aromatic facial amphiphile with oligo(ethylene oxide) dendrons. Chem. Commun. (Camb.) 1801–1803 (2007). doi:10.1039/b617404c

  136. Moon, K.-S., Kim, H.-J., Lee, E., Lee, M.: Self-assembly of T-shaped aromatic amphiphiles into stimulus-responsive nanofibers. Angew. Chem. Int. Ed. 46, 6807–6810 (2007). doi:10.1002/anie.200702136

    CAS  Google Scholar 

  137. Lee, E., Jeong, Y.-H., Kim, J.-K., Lee, M.: Controlled self-assembly of asymmetric dumbbell-shaped rod amphiphiles: transition from toroids to planar nets. Macromolecules 40, 8355–8360 (2007). doi:10.1021/ma071511+

    CAS  Google Scholar 

  138. Hill, J.P., Jin, W., Kosaka, A., Fukushima, T., Ichihara, H., Shimomura, T., Ito, K., Hashizume, T., Ishii, N., Aida, T.: Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004). doi:10.1126/science.1097789

    CAS  Google Scholar 

  139. Yamamoto, Y., Fukushima, T., Suna, Y., Ishii, N., Saeki, A., Seki, S., Tagawa, S., Taniguchi, M., Kawai, T., Aida, T.: Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006). doi:10.1126/science.1134441

    CAS  Google Scholar 

  140. Zhang, X., Chen, Z., Würthner, F.: Morphology control of fluorescent nanoaggregates by co-self-assembly of wedge- and dumbbell-shaped amphiphilic perylene bisimides. J. Am. Chem. Soc. 129, 4886–4887 (2007). doi:10.1021/ja070994u

    CAS  Google Scholar 

  141. McCormick, C.L. (ed.): Stimuli-Responsive Water Soluble and Amphiphilic Polymers. ACS, Washington, DC (2001)

    Google Scholar 

  142. Urban, M.W. (ed.): Stimuli-Responsive Polymeric Films and Coating. ACS, Washington, DC (2005)

    Google Scholar 

  143. Aathimanikandan, S.V., Savariar, E.N., Thayumanavan, S.: Temperature-sensitive dendritic micelles. J. Am. Chem. Soc. 127, 14922–14929 (2005). doi:10.1021/ja054542y

    CAS  Google Scholar 

  144. Basu, S., Vutukuri, D.R., Thayumanavan, S.: Homopolymer micelles in heterogeneous solvent mixtures. J. Am. Chem. Soc. 127, 16794–16795 (2005). doi:10.1021/ja056042a

    CAS  Google Scholar 

  145. Luisi, P.L., Walde, P. (eds.): Giant Vesicles. Wiley-VCH, Chichester (2000)

    Google Scholar 

  146. Shioi, A., Hatton, T.A.: Model for formation and growth of vesicles in mixed anionic/cationic (SOS/CTAB) surfactant systems. Langmuir 18, 7341–7348 (2002). doi:10.1021/la020268z

    CAS  Google Scholar 

  147. Li, Z., Hillmyer, M.A., Lodge, T.P.: Laterally nanostructured vesicles, polygonal bilayer sheets, and segmented wormlike micelles. Nano Lett. 6, 1245–1249 (2006). doi:10.1021/nl0608700

    CAS  Google Scholar 

Download references

Acknowledgement

The author thanks the organizing committee of Host-Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2008 and the opportunity of writing this review. This work was supported by Grant-in-Aid for Young Scientists (B) (No. 17750137, 19750122) and Scientific Research in a Priority Area “Super-Hierarchical Structures” (No. 18039038, 19022036) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Izumi Science and Technology Foundation, Iketani Science Technology Foundation, Mitsubishi Chemical Corporation Fund, Kumagai Foundation for Science and Technology, Nissan Science Foundation, Saneyoshi Scholarship Foundation, the Japan Securities Scholarship Foundation, the Science and Technology Foundation of Japan, Shorai Foundation for Science and Technology, and the Kao Foundation for Arts and Sciences, the “Academic Frontier” Project for Private Universities, namely the matching fund subsidy from the MEXT, 2003–2007, and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project, 2008–2013. The author thanks Prof. Atsuhiro Osuka, Dr. Soji Shimizu (Tohoku University), Dr. Shigeki Mori (Tokyo University), Mr. Yasuhide Inokuma, and Mr. Shohei Saito, Kyoto University, for the X-ray analyses, Dr. Takashi Nakanishi, National Institute for Materials Science (NIMS) and Max Planck Institute of Colloids and Interfaces, for various measurements of organized structures, Prof. Myongsoo Lee and Ms. Eunji Lee, Yonsei University, for cryo-TEM measurements, Prof. Hitoshi Tamiaki, Ritsumeikan University, for helpful discussions, and all the group members.

This is a paper selected for “HGCS Japan Award of Excellence 2008”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Maeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, H. Acyclic oligopyrroles as building blocks of supramolecular assemblies. J Incl Phenom Macrocycl Chem 64, 193–214 (2009). https://doi.org/10.1007/s10847-009-9568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9568-z

Keywords

Navigation