Skip to main content
Log in

Complex formation of cinnamaldehyde-methyl-β-cyclodextrin and muscone-methyl-β-cyclodextrin by supercritical carbon dioxide processing and sealed heating method

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Firstly, the interaction between cinnamaldehyde (CIN) and methyl-β- cyclodextrin (MBCD) was studied in aqueous solution. 1:1 inclusion complex was formed and the association constant was 187 ± 9 M−1. Then the complex of CIN–MBCD and muscone–MBCD was prepared both by sealed heating method and by supercritical carbon dioxide (sc CO2) approach. Complete complex was obtained by both methods for CIN–MBCD. Some CIN molecules was weakly associated with MBCD molecules in products by sealed heating method, all CIN molecules was strongly associated with MBCD molecules in products by sc CO2 processing. Complete complex between muscone and MBCD was not obtained. The choice for the size of guest molecule still existed for MBCD cavity in sealed heating method and sc CO2 processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Domadia, P., Swarup, S., Bhunia, A., Sivaraman, J., Dasgupta, D.: Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem. Pharmacol. 74, 831–840 (2007). doi:10.1016/j.bcp.2007.06.029

    Article  CAS  Google Scholar 

  2. Tung, Y.T., Chua, M.T., Wang, S.Y., Chang, S.T.: Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour. Technol. 99, 3908–3913 (2008). doi:10.1016/j.biortech.2007.07.050

    Article  CAS  Google Scholar 

  3. Hayashi, K., Imanishi, N., Kashiwayamac, Y., Kawanod, A., Terasawa, K., Shimada, Y., et al.: Inhibitory effect of cinnamaldehyde, derived from cinnamomi cortex on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Res. 74, 1–8 (2007). doi:10.1016/j.antiviral.2007.01.003

    Article  CAS  Google Scholar 

  4. Liao, B.C., Hsieh, C.W., Liu, Y.C., Tzeng, T.T., Sun, Y.W., Wung, B.S.: Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: effects upon IκB and Nrf2. Toxicol. Appl. Pharmacol. 229, 161–171 (2008). doi:10.1016/j.taap.2008.01.021

    Article  CAS  Google Scholar 

  5. Wu, S.J., Ng, L.T.: MAPK inhibitors and pifithrin-alpha block cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells. Food Chem. Toxicol. 45, 2446–2453 (2007). doi:10.1016/j.fct.2007.05.032

    Article  CAS  Google Scholar 

  6. Babu, P.S., Prabuseenivasan, S., Ignacimuthum, S.: Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine 14, 15–22 (2007)

    CAS  Google Scholar 

  7. Zhang, N.: Thermal stability of decomposition kinetic of β-CD cinnamic aldehyde inclusion complex. J. Iianzhong 11(4), 26–32 (1996)

    CAS  Google Scholar 

  8. Carlotti, M.E., Sapino, S., Cavalli, R., Trotta, M., Trotta, F., Martin, K.: Inclusion of cinnamaldehyde in modified γ-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 57, 445–450 (2007). doi:10.1007/s10847-006-9232-9

    Article  CAS  Google Scholar 

  9. Kamihira, M., Asai, T., Yamagata, Y., Taniguchi, M., Kobayashi, T.: Formation of inclusion complex between cyclodextrins and aromatic compounds under pressurized carbon dioxide. J. Ferment. Bioeng. 69, 350–353 (1991). doi:10.1016/0922-338X(90)90242-O

    Article  Google Scholar 

  10. Hees, T.V., Piel, G., Evrared, B., Otte, X., Thunnus, L., Delattre, L.: Application of supercritical carbon dioxide for the preparation of a piroxicam-β-cyclodextrin inclusion compound. Pharm. Res. 16, 1864–1870 (1999). doi:10.1023/A:1018955410414

    Article  Google Scholar 

  11. Charoenchaitrakool, M., Dehghani, F., Foster, N.R.: Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-cyclodextrin. Int. J. Pharm. 239, 103–112 (2002). doi:10.1016/S0378-5173(02)00078-9

    Article  CAS  Google Scholar 

  12. Junco, S., Casimiro, T., Ribeiro, N., Ponte, M.N., Marques, H.C.: A comparative study of naproxen-beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 44, 117–121 (2002). doi:10.1023/A:1023022008337

    Article  CAS  Google Scholar 

  13. Lai, S., Locci, E., Piras, A., Porcedda, S., Lai, A., Marongiu, B.: Imazalil-cyclomaltoheptaose (β-cyclodextrin) inclusion complex: preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization. Carbohydr. Res. 338, 2227–2232 (2003). doi:10.1016/S0008-6215(03)00358-6

    Article  CAS  Google Scholar 

  14. Locci, E., Lai, S., Piras, A., Marongiu, B., Lai, A.: 13C-CPMAS and 1H-NMR study of the inclusion complexes of β-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem. Biodivers. 1, 1354 (2004). doi:10.1002/cbdv.200490098

    Article  CAS  Google Scholar 

  15. Bandia, N., Weib, W., Robertsc, C.B., Kotrac, L.P., Kompellaa, U.B.: Preparation of budesonide and indomethacin-hydroxypropyl-cyclodextrin (HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur. J. Pharm. Sci. 23, 159–168 (2004). doi:10.1016/j.ejps.2004.06.007

    Article  Google Scholar 

  16. Rodier, E., Lochard, H., Sauceau, M., Letourneau, J.J., Freiss, B., Fages, J.: A three step supercritical process to improve the dissolution rate of eflucimibe. Eur. J. Pharm. Sci. 26, 184–193 (2005). doi:10.1016/j.ejps.2005.05.011

    Article  CAS  Google Scholar 

  17. Ibrahim, S., Ali, H., Al, M., Babomcarr, J., Ali, D.: Enhancement of aqueous solubility of itraconazole by complexation with cyclodextrins using supercritical carbon dioxide. Can. J. Chem. 83, 1833–1838 (2005). doi:10.1139/v05-181

    Article  Google Scholar 

  18. Al-Marzouqi, A.H., Shehatta, I., Jobe, B., Dowaidar, A.: Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. J. Pharm. Sci. 95, 292–304 (2006). doi:10.1002/jps.20535

    Article  CAS  Google Scholar 

  19. Wang, B., He, J., Sun, D.H., Zhang, R., Han, B.X.: Utilization of supercritical carbon dioxide for preparation of 3-hydroxyflavone and β-cyclodextrin complex. J. Incl. Phenom. Macrocycl. Chem. 55, 37–40 (2006). doi:10.1007/s10847-005-9015-8

    Article  CAS  Google Scholar 

  20. Ali, H., Al, M., Baboucarr, J., Ali, D., Francesca, M., Paola, M., et al.: Evaluation of supercritical fluid technology as preparative technique of benzocaine-cyclodextrin complex-comparison with conventional methods. J. Pharm. Biomed. Anal. 43, 566–574 (2007). doi:10.1016/j.jpba.2006.08.019

    Article  Google Scholar 

  21. Arezki, B., Elisabeth, R., Jacques, F.: Maturation of ketoprofen/β-cyclodextrin mixture with supercritical carbon dioxide. J. Supercrit. Fluids 41, 429–439 (2007). doi:10.1016/j.supflu.2006.11.004

    Article  Google Scholar 

  22. Khaled, H., Michael, T., Martin, A.W.: Comparative evaluation of ibuprofen/β-cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods. Pharm. Res. 24, 585–592 (2007). doi:10.1007/s11095-006-9177-0

    Article  Google Scholar 

  23. Al-Marzouqi, A.H., Jobe, B., Corti, G., Cirri, M., Mura, P.: Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Incl. Phenom. Macrocycl. Chem. 57, 223–231 (2007). doi:10.1007/s10847-006-9192-0

    Article  CAS  Google Scholar 

  24. Moribe, K., Fujito, T., Tozuka, Y., Yamamoto, K.: Solubility-dependent complexation of active pharmaceutical ingredients with trimethyl-β-cyclodextrin under supercritical fluid condition. J. Incl. Phenom. Macrocycl. Chem. 57, 289–295 (2007). doi:10.1007/s10847-006-9175-1

    Article  CAS  Google Scholar 

  25. Lee, S.Y., Jung, I.L., Kim, J.K., Lim, G.B., Ryu, J.H.: Preparation of itraconazole/HP-B-CD inclusion complexes using supercritical aerosol solvent extraction system and their dissolution characteristics. J. Supercrit. Fluid 44, 400–408 (2008). doi:10.1016/j.supflu.2007.09.006

    Article  CAS  Google Scholar 

  26. Al-Marzouqi, A.H., Solieman, A., Shehadi, I., Adem, A.: Influence of the preparation method on the physicochemical properties of econazole-β-cyclodextrin complexes. J. Incl. Phenom. Macrocycl. Chem. 60, 85–93 (2008). doi:10.1007/s10847-007-9356-6

    Article  CAS  Google Scholar 

  27. Yang, Y.G., Ru, Z.H.: Comparative studies on pharmaceutical properties of cinnamon oil B—CD inclusion complex and ultrafine powder of cortex cinnamomi. J. China Pharm. U 33(5), 388–392 (2002)

    CAS  Google Scholar 

  28. Higuchi, T., Connors, A.K.: Phase-solubility techniques. In: Reill, C.N. (ed.) Advances in Analytical Chemistry and Instrumentation, pp. 117–212. Wiley, New York (1965)

    Google Scholar 

  29. Okada, M., Kamachi, M., Harada, A.: Preparation and characterization of inclusion complexes of poly(propyleneglycol) with methylated cyclodextrins. J. Phys. Chem. B 103, 2607–2613 (1999). doi:10.1021/jp9823852

    Article  CAS  Google Scholar 

  30. Kano, K., Nishiyabu, R., Doi, R.: Novel behavior of O-methylated-cyclodextrins in inclusion of meso-tetraarylporphyrins. J. Org. Chem. 70, 3667–3673 (2005). doi:10.1021/jo0500535

    Article  CAS  Google Scholar 

  31. Hassonville, S.H.D., Perly, B., Piel, G., Van Hees, T., Barillaro, V., Bertholet, P., Delattre, L., Evrard, B.: Inclusion complexes of cyproterone acetate with cyclodextrins in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 44, 289–292 (2002). doi:10.1023/A:1023099611604

    Article  Google Scholar 

  32. Song, H.T., Guo, T., Qing, D.Y., Zhang, R.H., Ling, Y.X.: Stability of muscone-β-cyclodextrin inclusion complex. Pharm. People’s Liberation Army China Shen Yang 15(2), 102–104 (2002)

    Google Scholar 

  33. Di, L.Q., Mao, C.Q., Guo, R., Xue, M., Yan, K., Zhang, L., et al.: Study of diffusion of muscone in different inclusion complexes and liposome through rat skin in vitro. China J. Chin. Mat. Med. 30(4), 260–263 (2005)

    CAS  Google Scholar 

Download references

Acknowledgement

This study is supported by Molecular Science Center of Institute of Chemistry, The Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Li, W. Complex formation of cinnamaldehyde-methyl-β-cyclodextrin and muscone-methyl-β-cyclodextrin by supercritical carbon dioxide processing and sealed heating method. J Incl Phenom Macrocycl Chem 63, 61–68 (2009). https://doi.org/10.1007/s10847-008-9489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9489-2

Keywords

Navigation