Skip to main content
Log in

Synthesis and photophysical behavior of thia-aza macrocycles with 9-anthracenylmethyl moiety as fluorescent appendage

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

1,3-Bis(bromomethyl)-2-methoxy-5-methylbenzene, 1,3-bis(bromomethyl)-2,4,6-trimethylbenzene, 1,3- and 1,4-bis(bromomethyl)benzene undergo nucleophilic substitution with methyl mercaptoacetate to provide respective diesters 6–9. These diesters (6–9) on stirring with bis(3-aminopropyl)amine and diethylenetriamine in methanol–toluene (1:1) mixture undergo intermolecular cyclization to give respective thia-aza macrocycles 10–15. The alkylation of macrocycles 10–13 with 9-anthracenylmethyl chloride gave amine N-(anthracenylmethyl) substituted macrocycles 16–19. The extraction profile of macrocycles 10–15 towards alkali (Li+, Na+, K+), alkaline earth (Mg2+, Ca2+, Sr2+, Ba2+), Ag+, Tl+ and Pb2+ picrates shows preferential extraction of Ag+ with these macrocycles. The macrocycles 16–19 show fluorescence spectrum typical of anthracene moiety and depending on their structures exhibit 0–80 times increase in fluorescence on addition of transition metal ions. Fluorescent receptors 16, 17, and 19 are capable of functioning as a very efficient multi input OR logic gate.

Graphical abstract

1,3- and 1,4-Bis(bromomethyl)benzene and its substituted derivatives undergo nucleophilic substitution with methyl mercaptoacetate to provide respective diesters 6–8. These diesters (6–8) on stirring with bis(3-aminopropyl)amine in methanol–toluene (1:1) mixture undergo intermolecular cyclization to give respective thia-aza macrocycles 10–12. The alkylation of macrocycles 10–12 with 9-anthracenylmethyl chloride gave amine N-(anthracenylmethyl) substituted macrocycles 16–18. The macrocycles 16–18 exhibit 0–80 times increase in fluorescence on addition of transition metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. (a) Adam, K.R., Baldwin, D.S., Bashall, A., Lindoy, L.F., McPartlin, M., Powell, H.R.: Metal-ion recognition. Donor-set control of silver(I)/lead(II) discrimination using mixed-donor macrocyclic ligands. J. Chem. Soc., Dalton Trans. 237–238 (1994) (b) Adam, K.R., Baldwin, D.S., Duckworth, P.A., Lindoy, L.F., McPartlin, M., Bashall, A., Powell, H.R., Tasker, P.A.: Macrocyclic ligand design. Effect of donor-set and ring size variation on silver(I)/lead(II) discrimination within an extended series of dibenzo substituted rings. J. Chem. Soc., Dalton Trans. 1127–1132 (1995) (c) Ahearn, M.-A., Kim, J., Leong, A.J., Lindoy, L.F., Matthews, O.A., Meehan, G.V.: Metal-ion recognition. The interaction of copper(II), silver(I) and lead(II) with 22-membered macrocycles incorporating O4N2-,O2S2N2- and S4N2-donor sets. J. Chem. Soc., Dalton Trans. 3591–3594 (1996)

  2. (a) Parker, D.: Tumour targeting with radiolabelled macrocycle–antibody conjugates. Chem. Soc. Rev. 19, 271–292 (1990) (b) Siswanta, D., Nagatsuka, K., Yamada, H., Kumakura, K., Hisamoto, H., Shichi, Y., Toshima, K., Suzuki, K.: Structural Ion Selectivity of Thia Crown Ether Compounds with a Bulky Block Subunit and Their Application as an Ion-Sensing Component for an Ion-Selective Electrode. Anal. Chem. 68, 4166–4172 (1996)

    Google Scholar 

  3. (a) Izatt, R.M., Terry, R.E., Hansen, L.D., Avondet, A.G., Bradshaw, J.S., Dalley, N.K., Jensen, T.E., Christensen, J.J., Haymore, B.L.: A calorimetric titration study of uni-and bivalent metal ion interaction with several thia derivatives of 9-crown-3, 12-crown-4, 15-crown-5, 18-crown-6, 24-crown-8, and with several oxathiapentadecanes in water or water-methanol solvents at 25 °C. Inorg. Chim. Acta 30, 1–8, (1978) (b) Izatt, R.M., Terry, R.E., Haymore, B.L., Hansen, L.D., Dalley, N.K., Avondet, A.G., Christensen, J.J.: Calorimetric titration study of the interaction of several uni- and bivalent cations with 15-crown-5, 18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25.degree.C and .mu. = 0.1. J. Am. Chem. Soc. 98, 7620–7626 (1976)

    Google Scholar 

  4. Nabeshima, T., Tsukada, N., Nishijima, K., Ohshiro, H., Yano, Y.: Remarkably selective Ag+ extraction and transport by thiolariat ethers. J. Org. Chem. 61, 4342–4350 (1996)

    Article  CAS  Google Scholar 

  5. Nabeshima, T., Furusawa, H., Tsukada, N., Shinnai, T., Haruyama, T., Yano, Y.: Control of highly selective Ag+ transport by redox reactions between thiol and disulfide located inside a cavity of crown ether. Heterocycles 41, 655–659 (1995)

    Google Scholar 

  6. (a) Kataky, R., Matthes, K.E., Nicholson, P.E., Parker, D., Buschmann, H.J.: Synthesis and binding properties of amide-functionalised polyaza macrocycles. J. Chem. Soc., Perkin Trans. 2, 1425–1432 (1990) (b) Matthes, K.E., Parker, D., Buschmann, H.J., Ferguson, G.: Structure and complexation behaviour of calcium-selective [12]-N2O2 macrocycles incorporating amide substituents. Tetrahedron Lett. 28, 5573–5576 (1987) (c) Hancock, R.D., Wade, P.W., Ngwenya, M.P., Desousa, A.S., Damu, K.V.: Ligand design for complexation in aqueous solution. 2. Chelate ring size as a basis for control of size-based selectivity for metal ions. Inorg. Chem. 29, 1968–1974 (1990) (d) Lomicin, M.F., Desreux, J.F., Mercing, E.: Coordination of lanthanides by two polyamino polycarboxylic macrocycles: formation of highly stable lanthanide complexes. Inorg. Chem. 25, 2646–2648 (1986)

    Google Scholar 

  7. (a) Christensen, J.J., Eatough, D.J., Izatt, R.M.: The synthesis and ion bindings of synthetic multidentate macrocyclic compounds. Chem. Rev. 74, 351–384 (1974) (b) Frensdrof, H.H.: Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 93, 600–606 (1971)

    Google Scholar 

  8. (a) Matasumoto, K., Minatogawa, H., Munakata, M., Toda, M., Tsukube, H.: High pressure synthesis of new Ag+ ion-specific crown ethers. Tetrahedron Lett. 31, 3923–3926 (1990) (b) Tsukube, H., Uenishi, J., Higaki, H., Kikkawa, K., Tanaka, T., Wakabayashi, S., Oae, S.: Side arm effects on cation binding, extraction, and transport functions of oligopyridine-functionalized aza-crown ethers. J. Org. Chem. 58, 4389–4397 (1993)

    Google Scholar 

  9. (a) Fenton, R.R., Ganci, R., Junk, P.C., Lindoy, L.F., Lukay, R.C., Meehan, G.V., Prince, J.R., Turner, P., Wei, G.: Macrocyclic ligand design. Structure–function relationships involving the interaction of pyridinyl-containing, mixed oxygen–nitrogen donor macrocycles with cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), silver(I) and lead(II). J. Chem. Soc., Dalton Trans. 2185–2193 (2002) (b) Li, J.-R., Bu, X.-H., Du, W.-P., Xu, X.-H., Zhang, R.H.: Novel dithioether–silver(I) coordination architectures: structural diversities by varying the spacers and terminal groups of ligands. J. Chem. Soc., Dalton Trans. 464–474 (2005) (c) Maton, L., Taziaux, D., Soumillion, J.-P., Jiwan, J.-l.H.: About the use of an amide group as a linker in fluoroionophores: competition between linker and ionophore acting as chelating groups. J. Mater. Chem. 15, 2928–2937 (2005) (d) Valencia, L., Bastida, R., Macias, A., Vicente, M., Parez-Lourido, P.: Synthesis and helical polymeric structure of a luminescent pendant-armed macrocyclic silver(I) complex with Ag–Ag interactions. New J. Chem. 29, 424–426 (2005) (e) Ng, K.-M., Li, W.-K., Wo, S.-K., Tsang, C.-W., Ma, N.-L.: Silver(I) affinities of amides: a combined ab initio and experimental study. Phys. Chem. Chem. Phys. 6, 144–153 (2004)

    Google Scholar 

  10. Siswanta, D., Nagatsuka, K., Yamada, H., Kumakura, K., Hisamoto, H., Scichi, Y., Toshima, K., Suzuki, K.: Structural ion selectivity of thia crown ether compounds with a bulky block subunit and their application as an ion-sensing component for an ion-selective electrode. Anal. Chem. 68, 4166–4172 (1996)

    Article  CAS  Google Scholar 

  11. Tsukube, H., Venishi, J., Kojima, N., Yanemitsn, O.: Tridentate pyridine podand ionophores exhibiting perfect Ag+ ion selectivity. Tetrahedron Lett. 36, 2257–2260 (1995)

    Article  CAS  Google Scholar 

  12. Kumar, S., Hundal, M.S., Kaur, N., Singh, R., Hundal, G., Ripoll, M.M., Aparicio, J.S.: Synthetic ionophores. 13. pyridine-diamide-diester receptors: remarkable effect of amide substituents on molecular organization and Ag+ selectivity. J. Org. Chem. 61, 7819–7825 (1996)

    Article  CAS  Google Scholar 

  13. (a) Kumar, S., Hundal, G., Kaur, N., Hundal, M.S., Singh, H.: Bis-pyridine-tetramide 18 - membered macrocycles. Role of increased preorganisation on Ag+ / Pb2+ Selectivity. Tetrahedron Lett. 37, 131–132 (1997) (b) Kumar, S., Kaur, N., Singh, H.: Synthetic ionophores 16. Synthesis and association behaviour of bis-pyridine tetramide macrocycles: Role of increased preorganisation on Ag+ selectivity. Tetrahedron 53, 10841–10850 (1997)

    Google Scholar 

  14. Kumar, S., Bhalla, V., Singh, H.: Synthetic ionophores part 19: Synthesis and ionophore character of 2-aminothiophenol based silver selective acyclic and cyclic receptors. Tetrahedron 54, 5575–5586 (1998)

    Article  CAS  Google Scholar 

  15. (a) Kumar, S., Bhalla, V., Singh, P., Singh, H.: 2,8,14-trithio[15] m- / p- phenylene crownophanes: Ag+ selective receptors. Tetrahedron Lett. 37, 3495–3496 (1996) (b) Kumar, S., Hundal, M.S., Hundal, G., Singh, P., Bhalla, V., Singh, H.: Synthetic ionophores. Part 18: Ag+ selective trithiabenzena- and dithiabenzenapyridinacyclophanes. J. Chem. Soc., Perkin Trans. 2, 925–932 (1998)

    Google Scholar 

  16. (a) Kumar, S., Kaur, N., Singh, H.: Synthesis and association behaviour of pyridine based 18-membered diamide - diester - thioether macrocycles. Tetrahedron Lett. 37, 2071–2072 (1996) (b) Kumar, S., Kaur, N., Singh, H.: Synthetic ionophores part 14: Effect of pyridine and thioether ligating units on Ag+ selectivity in 18-membered diamide -diester macrocycles. Tetrahedron 52, 13483–13492 (1996)

    Google Scholar 

  17. Kumar, S., Kaur, S., Singh, H.: Synthetic ionophores. Part 20: Synthesis and ionophore character of 2-aminothiophenol and 1,3-/1,4-phenylene based silver selective receptors. J. Inclusion Phenom. Macrocycl. Chem. 39, 277–283 (2001)

    Article  CAS  Google Scholar 

  18. (a) Ghosh, P., Bharadwaj, P.K., Mandel, S., Ghosh, S.: Ni(II), Cu(II), and Zn(II) Cryptate-enhanced fluorescence of a trianthrylcryptand: A potential molecular photonic OR operator. J. Am. Chem. Soc. 118, 1553–1554 (1996) (b) de Silva, A.P., de Silva, S.A.: Fluorescent signalling crown ethers; ‘switching on’ of fluorescence by alkali metal ion recognition and binding in situ. J. Chem. Soc., Chem. Commun. 1709–1710 (1986) (c) de Silva, A.P., Gunnaratne, H.Q.N., Maguire, G.E.M.: Off-on fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates. J. Chem. Soc., Chem. Commun. 1213–1214 (1994)

    Google Scholar 

  19. (a) Ramachandram, B., Samanta, A.: Modulation of metal-fluorophore communication to develop structurally simpler sensors for transition metal ions. J. Chem. Soc., Chem. Commun. 1037–1038 (1997) (b) Ramachandram, B., Samanta, A.: Transition metal ion induced fluorescence enhancement of 4-(N,N-Dimethylethylenediamino)-7-nitrobenz-2-oxa-1,3-diazole. J. Phys. Chem. A. 102, 10579–10587 (1998) (c) Ramachandram, B., Saroja, G., Sankaran, N.B., Samanta, A.: Unusually high fluorescence enhancement of some1,8-Naphthalimide derivatives induced by transition metal salts. J. Phys. Chem. B. 104, 11824–11832 (2000)

    Google Scholar 

  20. (a) de Silva, A.P., Gunnaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997) (b) Rurack, K., Resch-Genger, U.: Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 31, 116–127 (2002) (c) de Silva, A.P., Fox, D.B., Huxley, A.J.M., McClenaghan, N.D., Roiran, J.: Metal complexes as components of luminescent signalling systems. Coord. Chem. Rev. 186, 297–306 (1999) (d) Lavigne, J.J., Anslyn, E.V.: Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors. Angew. Chem. Int. Ed. 40, 3118–3130 (2001) (e) Fabbrizzi, L., Licchelli, M., Rabaioli, G., Taglietti, A.F.: The design of luminescent sensors for anions and ionisable analytes. Coord. Chem. Rev. 205, 85–108 (2000) (f) de Silva, A.P., Fox, D.B., Huxley, A.J.M., Moody, T.S.: Combining luminescence, coordination and electron transfer for signalling purposes. Coord. Chem. Rev. 205, 41–57 (2000) (g) Amendola, V., Fabbrizzi, L., Licchelli, M., Mangano, C., Pallavicini, P., Prodi, L., Poggi, A.: Molecular events switched by transition metals. Coord. Chem. Rev. 190–192, 649–669 (1999)

    Google Scholar 

  21. (a) de Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E. In: Gokel, G.W. (ed.) Supramolecular photonic devices: photoinduced electron transfer (PET) systems with switchable luminescence output, in Advances in Supramolecular Chemistry, vol. 4, (1997) (b) Callan, J.F., de Silva, A.P., Magri, D.C.: Luminescent sensors and switches in the early 21st century. Tetrahedron 61, 8551–8588 (2005)

    Google Scholar 

  22. (a) Magri, D.C., Coen, G.D., Boyd, R.L., de Silva, A.P.: Consolidating molecular AND logic with two chemical inputs. Anal. Chim. Acta. 568, 156–160 (2006) (b) Magri, D.C., Brown, G.J., McClean, G.D., de Silva, A.P.: Communicating chemical congregation: A molecular AND logic gate with three chemical inputs as a “Lab-on-a-Molecule” prototype. J. Am. Chem. Soc. 128, 4950–4951 (2006)

    Google Scholar 

  23. Mostly transition metal ions are notorious quenchers of fluorescence, see: Varnes, A.W., Dodson, R.B., Wehry, E.L.: Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies. J. Am. Chem. Soc. 94, 946–950 (1972). For reviews on fluorosensors for transition metal ions, see: (a) Fabbrizzi, L., Licchelli, M., Pallavicini, P.: Transition metals as switches. Acc. Chem. Res. 32, 846–853 (1999) (b) Prodi, L., Bolletta, F., Montalti, M., Zaccheroni, N.: Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 205, 59–83 (2000)

  24. van der Made, A.W., van der Made, R.H.: A convenient procedure for bromomethylation of aromatic compounds. Selective mono-, bis-, or trisbromomethylation. J. Org. Chem. 58, 1262–1263 (1993)

    Article  Google Scholar 

  25. Wilhelm, W.: Bis(bromomethyl) compounds. J. Org. Chem. 17, 523–528 (1952)

    Article  Google Scholar 

  26. Kumar, S., Singh, R., Singh, H.: Synthetic ionophores. Part 8. Amide–ether–amine-containing macrocycles: synthesis, transport and binding of metal cations. J. Chem. Soc., Perkin Trans. 1, 3049–3054 (1992)

    Article  Google Scholar 

  27. The energy minimized conformations of receptors 10–13 and 16–19 have been computed by using PM3 calculations available in the CAChe 3.1 software

  28. (a) Moore, S.S., Tarnowski, T.L., Newcomb, M., Cram, D.J.: Host-guest complexation. 4. Remote substituent effects on macrocyclic polyether binding to metal and ammonium ions. J. Am. Chem. Soc. 99, 6398–6405 (1977) (b) Koeing, K.E., Lehn, J.M., Stuckler, P., Kaneda, T., Cram, D.J.: Host-guest complexation. 16. Synthesis and cation binding characteristics of macrocyclic polyethers containing convergent methoxyaryl groups. J. Am. Chem. Soc. 101, 3553–3566 (1979)

    Google Scholar 

Download references

Acknowledgments

We thank UGC, New Delhi for SAP programme; DST, New Delhi for financial assistance and FIST programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Kumar, S. Synthesis and photophysical behavior of thia-aza macrocycles with 9-anthracenylmethyl moiety as fluorescent appendage. J Incl Phenom Macrocycl Chem 59, 155–165 (2007). https://doi.org/10.1007/s10847-007-9308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9308-1

Keywords

Navigation