Skip to main content
Log in

Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The development of a quantitative model that correlates conduction in and sensing with p-type gas sensitive metal oxides is presented here. The theoretical results are confronted with the experimental data and found to be in very good agreement. The model also explains the differences between the performance of gas sensors based on n and p-type metal oxides and indicates the possible improvement routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.E. Williams, Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem. 57, 1–16 (1999). doi:10.1016/S0925-4005(99) 00133-1

    Article  Google Scholar 

  2. N. Barsan, M. Schweizer-Berberich, W. Gopel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors. A status report, Fresenius’. J. Anal. Chem. 365, 287–304 (1999). doi:10.1007/s002160051490

    Article  CAS  Google Scholar 

  3. G. Korotcenkov, Gas response control through structural and chemical modifications of metal oxide films: state of the art and approaches. Sens. Actuators, B 107, 209–232 (2005)

    Article  Google Scholar 

  4. K. Ihokura and W. J., The stannic oxide gas sensor: principle and application. (CRC, 1994)

  5. G. Heiland, Zum Einfluss von Wasserstoff auf die elektrische Leitfähigkeit von ZnO-Kristallen. Z. Phys. 138, 459–464 (1954). doi:10.1007/BF01340692

    Article  CAS  ADS  Google Scholar 

  6. A. Bielanski, J. Deren, J. Haber, Electric conductivity and catalytic activity of semiconducting oxide catalysts. Nature 179, 668–669 (1957). doi:10.1038/179668a0

    Article  CAS  ADS  Google Scholar 

  7. T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502f (1962). doi:10.1021/ac60191a001

    Article  Google Scholar 

  8. N. Taguchi, in U.S.Patent. 3,631,436, 1971

  9. http://www.figarosens.com, http://www.fisinc.co.jp, http://www.appliedsensors.com, http://www.citytech.com, http://www.microchem.com

  10. J. Marek, H.-P. Trah, Y. Suzuki, I. Yokomori, Sensors for automotive technology (Weinheim, VCH Weinheim, 2003)

    Book  Google Scholar 

  11. T.C. Pearce, S.S. Schiffman, H. Troy Nagle, G.J.W., Handbook of machine olfaction: electronic nose technology. (Wiley, 2003)

  12. N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7(3), 143–167 (2001). doi:10.1023/A:1014405811371

    Article  CAS  Google Scholar 

  13. S. Pokhrel, C.E. Simion, V. Quemener, N. Bârsan, U. Weimar, Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements. Sens. Actuators, B 133(1), 78–83 (2008)

    Article  Google Scholar 

  14. A. Gurlo, N. Barsan, A. Oprea, M. Sahm, T. Sahm, U. Weimar, A n- to p- type conductivity transition induced by oxygen adsorption on α-Fe2O3. Appl. Phys. Lett. 85(12), 2280–2281 (2004). doi:10.1063/1.1794853

    Article  CAS  ADS  Google Scholar 

  15. N. Barsan, D. Koziej, U. Weimar, Metal oxide based gas sensor research: how to? Special Issue, 25th Anniversary of Sensors and Actuators B: Chemical, E. Bakker, M. Egashira, M. Koudelka-Hep, R. Narayanaswany (Eds.). Sensors and Actuators B 121, 18–35 (2007)

  16. S.R. Morrison, The Chemical Physics of Surfaces (Plenum, New York, 1977). ISBN 0-306-30960-2, Sec. 2.2

    Google Scholar 

  17. N. Bârsan, R. Ionescu, The mechanism of interaction between CO and SnO2 surface—the role of water vapour. Sens. Actuators, B 12(1), 71–75 (1993)

    Article  Google Scholar 

  18. L.N. Cojocaru, Electrical properties of non-stoichiometric Cr2O3. Z. physic. Chem. Neue Folg 64(5/6), 255–262 (1969)

    CAS  Google Scholar 

  19. K. Hauffe, J. Block, Defective array model of an intrinsic-impurities semiconductor, Cr2O3. Z. Phys. Chem. 198(5/6), 232–247 (1951)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Barsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsan, N., Simion, C., Heine, T. et al. Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J Electroceram 25, 11–19 (2010). https://doi.org/10.1007/s10832-009-9583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9583-x

Keywords

Navigation