Skip to main content
Log in

Understanding the electrostatics of top-electrode vertical quantized Si nanowire metal–insulator–semiconductor (MIS) structures for future nanoelectronic applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a comprehensive analysis of the electrostatics of top-electrode vertically aligned quantized Si nanowire metal–insulator–semiconductor (MIS) structure is performed by formulating a self-consistent analytical model with simultaneous solution of Schrodinger and Poisson equations. The impact of high-k dielectrics on the electrostatic control of such quantized nanowire MIS devices is studied in detail. The electrostatic control is observed to degrade significantly for such high-k insulators with identical equivalent oxide thickness (EOT) due to the nonlinear dependence between dielectric constant and EOT in quantized nanowire MIS devices. The distribution of 3D confined charges along the nanowire is primarily governed by the generated quantum states which are a nonlinear function of the applied voltage. The electrostatic integrity of such device is investigated in terms of simultaneously maintaining the electrostatic control and reduction in carrier tunneling probability. In this context, the impact of several controlling parameters such as applied voltage, barrier height of the insulator/semiconductor junction, carrier effective mass of the insulator and nanowire diameter on tunneling probability is examined. The results suggest insulator effective mass (high-m*) to be the more significant parameter for maintaining electrostatic integrity than its dielectric constant (high-k) in quantized nanowire top-electrode MIS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Soo, M.T., Cheong, K.Y., Noor, A.F.M.: Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B Chem. 151, 39–55 (2010)

    Article  Google Scholar 

  2. Zhou, G., Wu, B., Liu, X., Li, P., Zhang, S., Sun, B., Zhou, A.: Two-bit memory and quantized storage phenomenon in conventional MOS structures with double-stacked Pt-NCs in an HfAlO matrix. Phys. Chem. Chem. Phys. 18, 6509–6514 (2016)

    Article  Google Scholar 

  3. Yasue, T., Kitamura, K., Watabe, T., Shimamoto, H., Kosugi, T., Watanabe, T., Aoyama, S., Monoi, M., Wei, Z., Kawahito, S.: A 1.7-in, 33-Mpixel, 120-frames/s CMOS image sensor with depletion-mode MOS capacitor-based 14-b two-stage cyclic A/D converters. IEEE Trans. Electron Devices 63, 153–161 (2016)

    Article  Google Scholar 

  4. Liu, A., Jones, R., Liao, L., Rubio, D.S., Rubin, D., Cohen, O., Nicolaescu, R., Paniccia, M.: A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004)

    Article  Google Scholar 

  5. Chatbouri, S., Troudi, M., Fargi, A., Kalboussi, A., Souifi, A.: The important contribution of photo-generated charges to the silicon nanocrystals photo-charging/discharging-response time at room temperature in MOS-photodetectors. Superlattices Microstruct. 94, 93–100 (2016)

    Article  Google Scholar 

  6. Tsai, P.C., Chen, W.R., Su, Y.K.: Enhanced ESD properties of GaN-based light-emitting diodes with various MOS capacitor designs. Superlattices Microstruct. 48, 23–30 (2010)

    Article  Google Scholar 

  7. Ho, W.-J., Liao, J.-J., Hou, Z.-F., Yeh, C.-W., Sue, R.-S.: High efficiency textured silicon solar cells based on an ITO/TiO2/Si MOS structure and biasing effects. Comput. Mater. Sci. 117, 596–601 (2016)

    Article  Google Scholar 

  8. Bhatia, D., Roy, S., Nawaz, S., Meena, R.S., Palkar, V.R.: Observation of temperature effect on electrical properties of novel Au/Bi0.7Dy0.3FeO3/ZnO/p-Si thin film MIS capacitor for MEMS applications. Microelectron. Eng. 168, 55–61 (2017)

    Article  Google Scholar 

  9. Chand, R., Han, D., Neethirajan, S., Kim, Y.-S.: Detection of protein kinase using an aptamer on a microchip integrated electrolyte-insulator-semiconductor sensor. Sens. Actuators B Chem. 248, 973–979 (2017)

    Article  Google Scholar 

  10. Kao, C.-H., Chang, C.-W., Chen, Y.T., Su, W.M., Lu, C.C., Lin, C.-Y., Chen, H.: Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors. Sci. Rep. 7, 1–9 (2017)

    Article  Google Scholar 

  11. Prakash, A., Maikap, S., Rahaman, S.Z., Majumdar, S., Manna, S., Ray, S.K.: Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration. Nanoscale Res. Lett. 8, 220–230 (2013)

    Article  Google Scholar 

  12. Cho, S.Y., Yoo, H.-W., Kim, J.Y., Jung, W.-B., Jin, M.L., Kim, J.-S., Jeon, H.-J., Jung, H.-T.: High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett. 16, 4508–4515 (2016)

    Article  Google Scholar 

  13. Bae, J., Kim, H., Zhang, X.-M., Dang, C.H., Zhang, Y., Choi, Y.J., Nurmikko, A., Wang, Z.L.: Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21, 095502.1–095502.5 (2010)

    Article  Google Scholar 

  14. Sikdar, S., Chowdhury, B.N., Ghosh, A., Chattopadhyay, S.: Analytical modeling to design the vertically aligned Si-nanowire metal-oxide-semiconductor photosensors for direct color sensing with high spectral resolution. Physica E 87, 44–50 (2017)

    Article  Google Scholar 

  15. Oener, S.Z., van Groep, J., Macco, B., Bronsveld, P.C.P., Kessels, W.M.M., Polman, A., Garnett, E.C.: Metal–insulator–semiconductor nanowire network solar cells. Nano Lett. 16, 3689–3695 (2016)

    Article  Google Scholar 

  16. Hobbs, R.G., Petkov, N., Holmes, J.D.: Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mater. 24, 1975–1991 (2012)

    Article  Google Scholar 

  17. Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012)

    Article  Google Scholar 

  18. Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., Meyyappan, M.: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247–1252 (2004)

    Article  Google Scholar 

  19. Larrieu, G., Hanb, X.-L.: Vertical nanowire array-based field effect transistors for ultimate scaling. Nanoscale 5, 2437–2441 (2013)

    Article  Google Scholar 

  20. Hochbaum, A.I., Fan, R., He, R., Yang, P.: Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005)

    Article  Google Scholar 

  21. Mohan, P., Motohisa, J., Fukui, T.: Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903–2907 (2005)

    Article  Google Scholar 

  22. Duc, T.-T.N., Gacusan, J., Kobayashi, N.P., Sanghadasa, M., Meyyappan, M., Oye, M.M.: Controlled growth of vertical ZnO nanowires on copper substrate. Appl. Phys. Lett. 102, 083105.1–083105.4 (2013)

    Google Scholar 

  23. Tomioka, K., Motohisa, J., Hara, S., Fukui, T.: Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475–3480 (2008)

    Article  Google Scholar 

  24. Zhao X, Lin J, Heidelberger C, Fitzgerald EA, del Alamo JA (2013) Vertical nanowire InGaAs MOSFETs fabricated by a top-down approach. IEEE Int Electron Devices Meet. https://doi.org/10.1109/IEDM.2013.6724710

  25. Tomioka, K., Yoshimura, M., Fukui, T.: A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012)

    Article  Google Scholar 

  26. Hourdakis, E., Casanova, A., Larrieu, G., Nassiopoulou, A.G.: Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics. Solid State Electron. 143, 77–82 (2018)

    Article  Google Scholar 

  27. Fan, Wu, Qiao, Qiquan, Bahrami, Behzad, Chen, Ke, Pathak, Rajesh, Mabrouk, Sally, Tong, Yanhua, Li, Xiaoyi, Zhang, Tiansheng, Jian, Ronghua: Comparison of performance and optoelectronic processes in ZnO and TiO2 nanorod array-based hybrid solar cells. Appl. Surf. Sci. 456, 124–132 (2018)

    Article  Google Scholar 

  28. Yeo, Y.-C., King, T.-J., Hu, C.: MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans. Electron Devices 50, 1027–1035 (2003)

    Article  Google Scholar 

  29. Locquet, J.-P., Marchiori, C., Sousa, M., Fompeyrine, J., Seo, J.W.: High-K dielectrics for the gate stack. J. Appl. Phys. 100, 051610.1–051610.14 (2006)

    Article  Google Scholar 

  30. Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853–1864 (2003)

    Article  Google Scholar 

  31. Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  Google Scholar 

  32. Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Devices 55, 1286–1297 (2008)

    Article  Google Scholar 

  33. Lo, S.-H., Buchanan, D., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18, 209–211 (1997)

    Article  Google Scholar 

  34. Ochiai, M., Akita, M., Ohno, Y., Kishimoto, S., Maezawa, K., Mizutani, T.: AlGaN/GaN heterostructure metal-insulator-semiconductor high-electron-mobility transistors with Si3N4 gate insulator. Jpn. J. Appl. Phys. 42, 2278–2280 (2003)

    Article  Google Scholar 

  35. Ye, P.D., Wilk, G.D., Yang, B., Kwo, J., Chu, S.N.G., Nakahara, S., Gossmann, H.-J.L., Mannaerts, J.P., Hong, M., Ng, K.K., Bude, J.: GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition. Appl. Phys. Lett. 83, 180–182 (2003)

    Article  Google Scholar 

  36. Rastogi, A., Desu, S.: Current conduction and dielectric behavior of high k-Y2O3 films integrated with Si using chemical vapor deposition as a gate dielectric for metal-oxide-semiconductor devices. J. Electroceram. 13, 121–127 (2004)

    Article  Google Scholar 

  37. Kang, L., Lee, B.H., Qi, W.-J., Jeon, Y., Nieh, R., Gopalan, S., Onishi, K., Lee, J.C.: Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Lett. 21, 181–183 (2000)

    Article  Google Scholar 

  38. Lee, B.H., Kang, L., Nieh, R., Qi, W.-J., Lee, J.C.: Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76, 1926–1928 (2000)

    Article  Google Scholar 

  39. Wu, Y., Yang, M., Chin, A., Chen, W., Kwei, C.: Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å. IEEE Electron Device Lett. 21, 341–343 (2000)

    Article  Google Scholar 

  40. Kakushima, K., Tachi, K., Ahmet, P., Tsutsui, K., Sugii, N., Hattori, T., Iwai, H.: Advantage of further scaling in gate dielectrics below 0.5 nm of equivalent oxide thickness with La2O3 gate dielectrics. Microelectron. Reliab. 50, 790–793 (2010)

    Article  Google Scholar 

  41. Roy, K., Mukhopadhyay, S., Meimand, H.M.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305–327 (2003)

    Article  Google Scholar 

  42. Bastard, G.: Superlattice band structure in the envelope-function approximation. Phys. Rev. B 24, 5693–5697 (1981)

    Article  Google Scholar 

  43. Yeo, Yee-Chia, King, Tsu-Jae, Chenming, Hu: Direct tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 81, 2091–2093 (2002)

    Article  Google Scholar 

  44. Yeo, Y.C., Lu, Q., Lee, W.C., King, T.-J., Hu, C., Wang, X., Guo, X., Ma, T.P.: Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric. IEEE Electron Device Lett. 21, 540–542 (2000)

    Article  Google Scholar 

  45. Hinkle, C.L., Fulton, C., Nemanich, R.J., Lucovsky, G.: A novel approach for determining the effective tunneling mass of electrons in HfO2 and other high-K alternative gate dielectrics for advanced CMOS devices. Microelectron. Eng. 72, 257–262 (2004)

    Article  Google Scholar 

  46. Monaghan, S., Hurley, P., Cherkaoui, K., Negara, M.A., Schenk, A.: Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures. Solid-State Electron. 53, 438–444 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Subhrajit Sikdar thanks the University Grant Commission (UGC), Government of India, for funding the fellowship through University of Calcutta. The authors also thank the Center of Excellence (COE) for the Systems Biology and Biomedical Engineering, and Center for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, for providing the necessary infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanatan Chattopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikdar, S., Chowdhury, B.N. & Chattopadhyay, S. Understanding the electrostatics of top-electrode vertical quantized Si nanowire metal–insulator–semiconductor (MIS) structures for future nanoelectronic applications. J Comput Electron 18, 465–472 (2019). https://doi.org/10.1007/s10825-019-01321-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01321-7

Keywords

Navigation