Skip to main content
Log in

The maximum rectification ratio of pyrene-based molecular devices: a systematic study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We apply the NEGF + DFT technique to study the effect of anchoring groups on the electronic transport properties of a single pyrene molecule attached to two Au electrodes via three different anchoring groups (namely NO2, NH2 and CN). More specifically, we investigate the effect of asymmetric electrode coupling together with B and N doping on rectification ratio of a pyrene-based molecular device. The results indicate that the rectification ratio can be tuned by selecting configurations of maximum difference in the coupling parameters in the two sides of the gold electrodes, and its magnitude depends on the strength of the electronic coupling of the pyrene molecule to the gold electrodes. In addition, we observe that doping the molecule with B and N atoms decreases the coupling parameters by creating a resonant peak close to the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974)

    Article  Google Scholar 

  2. Tsutsui, M., Teramae, Y., Kurokawa, S., Sakai, A.: High-conductance states of single benzenedithiol molecules. Appl. Phys. Lett. 89(16), 163111 (2006)

    Article  Google Scholar 

  3. Néel, N., Kröger, J., Limot, L., Berndt, R.: Conductance of oriented C60 molecules. Nano Lett. 8(5), 1291–1295 (2008)

    Article  Google Scholar 

  4. Mishchenko, A., Zotti, L.A., Vonlanthen, D., Bürkle, M., Pauly, F., Cuevas, J.C., Wandlowski, T.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)

    Article  Google Scholar 

  5. Chiechi, R.C., Weiss, E.A., Dickey, M.D., Whitesides, G.M.: Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. 120(1), 148–150 (2008)

    Article  Google Scholar 

  6. Temirov, R., Lassise, A., Anders, F.B., Tautz, F.S.: Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19(6), 065401 (2008)

    Article  Google Scholar 

  7. An, Y.P., Yang, Z., Ratner, M.A.: High-efficiency switching effect in porphyrin-ethyne-benzene conjugates. J. Chem. Phys. 135(4), 044706 (2011)

    Article  Google Scholar 

  8. Fan, Z.Q., Zhang, Z.H., Qiu, M., Tang, G.P.: Rectifying performance and reversible conductance switching of single-polyaniline devices. Phys. Lett. A 375(37), 3314–3318 (2011)

    Article  Google Scholar 

  9. Min, Y., Yao, K.L., Fu, H.H., Liu, Z.L., Li, Q.: First-principles study of strong rectification and negative differential resistance induced by charge distribution in single molecule. J. Chem. Phys. 132(21), 214703 (2010)

    Article  Google Scholar 

  10. Fan, Z.Q., Chen, K.Q.: Negative differential resistance and rectifying behaviors in phenalenyl molecular device with different contact geometries. Appl. Phys. Lett. 96(5), 053509 (2010)

    Article  Google Scholar 

  11. Saffarzadeh, A., Farghadan, R.: A spin-filter device based on armchair graphene nanoribbons. Appl. Phys. Lett. 98(2), 023106 (2011)

    Article  Google Scholar 

  12. Zhu, L., Yao, K.L., Liu, Z.L.: Molecular spin valve and spin filter composed of single-molecule magnets. Appl. Phys. Lett. 96(8), 082115 (2010)

    Article  Google Scholar 

  13. Ren, Y., Chen, K.Q., Wan, Q., Zou, B.S., Zhang, Y.: Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices. Appl. Phys. Lett. 94(18), 183506 (2009)

    Article  Google Scholar 

  14. An, Y., Yang, Z.: Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects. Appl. Phys. Lett. 99(19), 192102 (2011)

    Article  Google Scholar 

  15. Long, M.Q., Chen, K.Q., Wang, L., Qing, W., Zou, B.S., Shuai, Z.: Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. Appl. Phys. Lett. 92(24), 215 (2008)

    Article  Google Scholar 

  16. Pan, H., Zhang, Y.W., Shenoy, V.B., Gao, H.: Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. J. Phys. Chem. C 115(24), 12224–12231 (2011)

    Article  Google Scholar 

  17. Müller, K.H.: Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules. Phys. Rev. B 73(4), 045403 (2006)

    Article  Google Scholar 

  18. Hu, Y., Zhu, Y., Gao, H., Guo, H.: Conductance of an ensemble of molecular wires: a statistical analysis. Phys. Rev. Lett. 95(15), 156803 (2005)

    Article  Google Scholar 

  19. Basch, H., Cohen, R., Ratner, M.A.: Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. Nano Lett. 5(9), 1668–1675 (2005)

    Article  Google Scholar 

  20. Ke, S.H., Baranger, H.U., Yang, W.: Molecular conductance: chemical trends of anchoring groups. J. Am. Chem. Soc. 126(48), 15897–15904 (2004)

    Article  Google Scholar 

  21. Dell’Angela, M., Kladnik, G., Cossaro, A., Verdini, A., Kamenetska, M., Tamblyn, I., Venkataraman, L.: Relating energy level alignment and amine-linked single molecule junction conductance. Nano Lett. 10(7), 2470–2474 (2010)

    Article  Google Scholar 

  22. Darancet, P., Widawsky, J.R., Choi, H.J., Venkataraman, L., Neaton, J.B.: Quantitative current–voltage characteristics in molecular junctions from first principles. Nano Lett. 12(12), 6250–6254 (2012)

    Article  Google Scholar 

  23. Wickenburg, S., Lu, J., Lischner, J., Tsai, H.Z., Omrani, A.A., Riss, A., Wong, D.: Tuning charge and correlation effects for a single molecule on a graphene device. Nat. Commun. 7, 13553 (2016)

    Article  Google Scholar 

  24. Kamenetska, M., Koentopp, M., Whalley, A.C., Park, Y.S., Steigerwald, M.L., Nuckolls, C., Venkataraman, L.: Formation and evolution of single-molecule junctions. Phys. Rev. Lett. 102(12), 126803 (2009)

    Article  Google Scholar 

  25. Lörtscher, E., Cho, C.J., Mayor, M., Tschudy, M., Rettner, C., Riel, H.: Influence of the anchor group on charge transport through single-molecule junctions. ChemPhysChem 12(9), 1677–1682 (2011)

    Article  Google Scholar 

  26. Li, Z., Smeu, M., Ratner, M.A., Borguet, E.: Effect of anchoring groups on single molecule charge transport through porphyrins. J. Phys. Chem. C 117(29), 14890–14898 (2013)

    Article  Google Scholar 

  27. Ulrich, J., Esrail, D., Pontius, W., Venkataraman, L., Millar, D., Doerrer, L.H.: Variability of conductance in molecular junctions. J. Phys. Chem. B 110(6), 2462–2466 (2006)

    Article  Google Scholar 

  28. Li, C., Pobelov, I., Wandlowski, T., Bagrets, A., Arnold, A., Evers, F.: Charge transport in single Au| alkanedithiol| Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130(1), 318–326 (2008)

    Article  Google Scholar 

  29. Yasuda, S., Yoshida, S., Sasaki, J., Okutsu, Y., Nakamura, T., Taninaka, A., Shigekawa, H.: Bond fluctuation of S/Se anchoring observed in single-molecule conductance measurements using the point contact method with scanning tunneling microscopy. J. Am. Chem. Soc. 128(24), 7746–7747 (2006)

    Article  Google Scholar 

  30. Zhang, Z., Yoshida, N., Imae, T., Xue, Q., Bai, M., Jiang, J., Liu, Z.: A self-assembled monolayer of an alkanoic acid-derivatized porphyrin on gold surface: a structural investigation by surface plasmon resonance, ultraviolet–visible, and infrared spectroscopies. J. Colloid Interface Sci. 243(2), 382–387 (2001)

    Article  Google Scholar 

  31. Heera, T.R., Cindrella, L.: Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers. J. Mol. Model. 16(3), 523–533 (2010)

    Article  Google Scholar 

  32. Cheng, Z.L., Skouta, R., Vazquez, H., Widawsky, J.R., Schneebeli, S., Chen, W., Venkataraman, L.: In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6(6), 353–357 (2011)

    Article  Google Scholar 

  33. Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D., Berndt, R.: Atomic-scale engineering of electrodes for single-molecule contacts. Nat. Nanotechnol. 6(1), 23–27 (2011)

    Article  Google Scholar 

  34. Frei, M., Aradhya, S.V., Koentopp, M., Hybertsen, M.S., Venkataraman, L.: Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11(4), 1518–1523 (2011)

    Article  Google Scholar 

  35. Hong, W., Manrique, D.Z., Moreno-Garcia, P., Gulcur, M., Mishchenko, A., Lambert, C.J., Wandlowski, T.: Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134(4), 2292–2304 (2012)

    Article  Google Scholar 

  36. Lörtscher, E., Cho, C.J., Mayor, M., Tschudy, M., Rettner, C., Riel, H.: Influence of the anchor group on charge transport through single-molecule junctions. ChemPhysChem 12(9), 1677–1682 (2011)

    Article  Google Scholar 

  37. Zotti, L.A., Kirchner, T., Cuevas, J.C., Pauly, F., Huhn, T., Scheer, E., Erbe, A.: Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6(14), 1529–1535 (2010)

    Article  Google Scholar 

  38. Koepf, M., Koenigsmann, C., Ding, W., Batra, A., Negre, C.F., Venkataraman, L., Crabtree, R.H.: Controlling the rectification properties of molecular junctions through molecule–electrode coupling. Nanoscale 8(36), 16357–16362 (2016)

    Article  Google Scholar 

  39. Ulrich, J., Esrail, D., Pontius, W., Venkataraman, L., Millar, D., Doerrer, L.H.: Variability of conductance in molecular junctions. J. Phys. Chem. B 110(6), 2462–2466 (2006)

    Article  Google Scholar 

  40. Jamali, M.F., Tagani, M.B., Soleimani, H.R.: Improvement of the thermoelectric efficiency of Pyrene-based molecular junction with doping engineering. Chin. Phys. B 26(12), 123101 (2017)

    Article  Google Scholar 

  41. Xue, Y., Ratner, M.A.: End group effect on electrical transport through individual molecules: a microscopic study. Phys. Rev. B 69(8), 085403 (2004)

    Article  Google Scholar 

  42. Kim, Y., Hellmuth, T.J., Burkle, M., Pauly, F., Scheer, E.: Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy. ACS Nano 5(5), 4104–4111 (2011)

    Article  Google Scholar 

  43. Kushmerick, J.G., Whitaker, C.M., Pollack, S.K., Schull, T.L., Shashidhar, R.: Tuning current rectification across molecular junctions. Nanotechnology 15(7), S489 (2004)

    Article  Google Scholar 

  44. Van Dyck, C., Ratner, M.A.: Molecular rectifiers: a new design based on asymmetric anchoring moieties. Nano Lett. 15(3), 1577–1584 (2015)

    Article  Google Scholar 

  45. Bala, S., Aithal, R.K., Derosa, P., Janes, D., Kuila, D.: Molecular rectifying diodes based on an aluminum/4′-hydroxy-4-biphenyl carboxylic acid/p+-silicon junction. J. Phys. Chem. C 114(48), 20877–20884 (2010)

    Article  Google Scholar 

  46. Metzger, R.M.: Unimolecular rectifiers: present status. Chem. Phys. 326(1), 176–187 (2006)

    Article  Google Scholar 

  47. Nijhuis, C.A., Reus, W.F., Whitesides, G.M.: Molecular rectification in metal–SAM–metal oxide–metal junctions. J. Am. Chem. Soc. 131(49), 17814–17827 (2009)

    Article  Google Scholar 

  48. Nijhuis, C.A., Reus, W.F., Barber, J.R., Dickey, M.D., Whitesides, G.M.: Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett. 10(9), 3611–3619 (2010)

    Article  Google Scholar 

  49. Souto, M., Yuan, L., Morales, D.C., Jiang, L., Ratera, I., Nijhuis, C.A., Veciana, J.: Tuning the rectification ratio by changing the electronic nature (open-shell and closed-shell) in donor–acceptor self-assembled monolayers. J. Am. Chem. Soc. 139(12), 4262–4265 (2017)

    Article  Google Scholar 

  50. Ryu, T., Lansac, Y., Jang, Y.H.: Shuttlecock-shaped molecular rectifier: asymmetric electron transport coupled with controlled molecular motion. Nano Lett. 17(7), 4061–4066 (2017)

    Article  Google Scholar 

  51. Metzger, R.M.: Unimolecular electronics. Chem. Rev. 115(11), 5056–5115 (2015)

    Article  Google Scholar 

  52. Metzger, R.M.: Unimolecular electronics. J. Mater. Chem. 18(37), 4364–4396 (2008)

    Article  Google Scholar 

  53. Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103(9), 3803–3834 (2003)

    Article  Google Scholar 

  54. Stadler, R., Geskin, V., Cornil, J.: A theoretical view of unimolecular rectification. J. Phys. Condens. Matter 20(37), 374105 (2008)

    Article  Google Scholar 

  55. Zahedi, E., Pangh, A.: Current–voltage characteristics through dithienylcyclopentene: a NEGF-DFT study. Phys. E 61, 1–8 (2014)

    Article  Google Scholar 

  56. Stefani, D., Gutiérrez-Cerón, C.A., Aravena, D., Labra-Muñoz, J., Suarez, C., Liu, S., Dulic, D.: Charge transport through a single molecule of trans-1-bis-Diazofluorene [60] fullerene. Chem. Mater. 29(17), 7305–7312 (2017)

    Article  Google Scholar 

  57. Sebera, J., Kolivoska, V., Valášek, M., Gasior, J., Sokolová, R., Meszaros, G., Hromadová, M.: Tuning charge transport properties of asymmetric molecular junctions. J. Phys. Chem. C 121(23), 12885–12894 (2017)

    Article  Google Scholar 

  58. Wang, L.H., Guo, Y., Tian, C.F., Song, X.P., Ding, B.J.: Negative differential resistance and rectifying behaviors in atomic molecular device with different anchoring groups. Phys. E 43(1), 524–528 (2010)

    Article  Google Scholar 

  59. Zhang, H., Zeng, J., Chen, K.Q.: Rectifying and negative differential resistance behaviors induced by asymmetric electrode coupling in Pyrene-based molecular device. Phys. E 44(7), 1631–1635 (2012)

    Article  Google Scholar 

  60. Fan, Z.Q., Zhang, Z.H., Qiu, M., Deng, X.Q., Tang, G.P.: The site effects of B or N doping on IV characteristics of a single Pyrene molecular device. Appl. Phys. Lett. 101(7), 073104 (2012)

    Article  Google Scholar 

  61. Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), 165401 (2002)

    Article  Google Scholar 

  62. Zhang, Z., Yang, Z., Yuan, J., Zhang, H., Ming, Q., Deng, X.: Electronic transport properties of pheny1 based molecular devices. Solid State Commun. 149(1), 60–63 (2009)

    Article  Google Scholar 

  63. Liu, J., Kind, M., Schüpbach, B., Käfer, D., Winkler, S., Zhang, W., Wöll, C.: Triptycene-terminated thiolate and selenolate monolayers on Au (111). Beilstein J. Nanotechnol. 8, 892 (2017)

    Article  Google Scholar 

  64. Lud, S.Q., Neppl, S., Richter, G., Bruno, P., Gruen, D.M., Jordan, R., Garrido, J.A.: Controlling surface functionality through generation of thiol groups in a self-assembled monolayer. Langmuir 26(20), 15895–15900 (2010)

    Article  Google Scholar 

  65. Rangel, T., Ferretti, A., Olevano, V., Rignanese, G.M.: Many-body correlations and coupling in benzene-dithiol junctions. Phys. Rev. B 95(11), 115137 (2017)

    Article  Google Scholar 

  66. Kristensen, I.S., Mowbray, D.J., Thygesen, K.S., Jacobsen, K.W.: Comparative study of anchoring groups for molecular electronics: structure and conductance of Au–S–Au and Au–NH2–Au junctions. J. Phys. Condens. Matter 20(37), 374101 (2008)

    Article  Google Scholar 

  67. Ford, M.J., Hoft, R.C., McDonagh, A.M., Cortie, M.B.: Rectification in donor–acceptor molecular junctions. J. Phys. Condens. Matter 20(37), 374106 (2008)

    Article  Google Scholar 

  68. Mishchenko, A., Zotti, L.A., Vonlanthen, D., Bürkle, M., Pauly, F., Cuevas, J.C., Wandlowski, T.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)

    Article  Google Scholar 

  69. Nigam, S., Sahoo, S.K., Sarkar, P., Majumder, C.: Chair like NiAu6: clusters assemblies and CO oxidation study by ab initio methods. Chem. Phys. Lett. 584, 108–112 (2013)

    Article  Google Scholar 

  70. Ganji, M.D.: Azopyridine molecular conductor: a superior device for molecular switch technology. Electron. Mater. Lett. 8(6), 565–570 (2012)

    Article  Google Scholar 

  71. Quek, S.Y., Venkataraman, L., Choi, H.J., Louie, S.G., Hybertsen, M.S., Neaton, J.B.: Amine–gold linked single-molecule circuits: experiment and theory. Nano Lett. 7(11), 3477–3482 (2007)

    Article  Google Scholar 

  72. Paulsson, M., Frederiksen, T., Brandbyge, M.: Inelastic transport through molecules: comparing first-principles calculations to experiments. Nano Lett. 6(2), 258–262 (2006)

    Article  Google Scholar 

  73. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  Google Scholar 

  74. Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  75. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31(10), 6207 (1985)

    Article  Google Scholar 

  76. Fan, Z.Q., Zhang, Z.H., Deng, X.Q., Tang, G.P., Yang, C.H., Sun, L., Zhu, H.L.: Effect of electrode twisting on electronic transport properties of atomic carbon wires. Carbon 98, 179–186 (2016)

    Article  Google Scholar 

  77. Huisman, E.H., Guédon, C.M., van Wees, B.J., van der Molen, S.J.: Interpretation of transition voltage spectroscopy. Nano Lett. 9(11), 3909–3913 (2009)

    Article  Google Scholar 

  78. Chen, X., Braunschweig, A.B., Wiester, M.J., Yeganeh, S., Ratner, M.A., Mirkin, C.A.: Spectroscopic tracking of molecular transport junctions generated by using click chemistry. Angew. Chem. Int. Ed. 48(28), 5178–5181 (2009)

    Article  Google Scholar 

  79. Podstawka, E., Ozaki, Y., Proniewicz, L.M.: Part III: surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Appl. Spectrosc. 59(12), 1516–1526 (2005)

    Article  Google Scholar 

  80. Chen, F., Li, X., Hihath, J., Huang, Z., Tao, N.: Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128(49), 15874–15881 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Iran National Science Foundation (INSF) (94011986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rahimpour Soleimani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, M.F., Soleimani, H.R. & Tagani, M.B. The maximum rectification ratio of pyrene-based molecular devices: a systematic study. J Comput Electron 18, 453–464 (2019). https://doi.org/10.1007/s10825-019-01307-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01307-5

Keywords

Navigation