Skip to main content

Advertisement

Log in

First-principles simulation of oxygen vacancy migration in \(\hbox {HfO}_{ x}\), \(\hbox {CeO}_{ x}\), and at their interfaces for applications in resistive random-access memories

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Transition metal-oxide resistive random-access memories seem to be a viable candidate as the next-generation storage technology because transition metals have multiple oxidation states and are good ionic conductors. A wide range of transition metal oxides have recently been studied; however, fundamental understanding of the switching mechanism is still lacking. Migration energies and diffusivity of oxygen vacancies in amorphous and crystalline \(\hbox {HfO}_{2}\) and \(\hbox {CeO}_{2}\) and at their interface are investigated by employing density functional theory. We found that oxygen dynamics is better in \(\hbox {CeO}_{2}\) compared to \(\hbox {HfO}_{2}\), including smaller activation energy barriers and larger diffusion pre-factors, which can have implications in the material-selection process to determine which combination of materials offer the most efficient switching. Furthermore, we found that motion of vacancies is different at the interface of these two oxides as compared to that within each constituents, which provided insight into the role of the interface in vacancy motion and ultimately using interface engineering as a way to tune material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gibbons, J.F., Beadle, W.E.: Switching properties of thin NiO films. Solid-State Electron. 7, 785–790 (1964)

    Article  Google Scholar 

  2. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories: nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  3. Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B., Tiedke, S.: Resistive switching mechanism of TiO\(_2\) thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005)

    Article  Google Scholar 

  4. Baek, I.G., Lee, M.S., Seo, S., Lee, M.-J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K.: others: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. pp. 587–590. IEEE (2004)

  5. Dietrich, S., Angerbauer, M., Ivanov, M., Gogl, D., Hoenigschmid, H., Kund, M., Liaw, C., Markert, M., Symanczyk, R., Altimime, L., Bournat, S., Mueller, G.: A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J. Solid-State Circuits 42, 839–845 (2007)

    Article  Google Scholar 

  6. Lee, M.-J., Seo, S., Kim, D.-C., Ahn, S.-E., Seo, D.H., Yoo, I.-K., Baek, I.-G., Kim, D.-S., Byun, I.-S., Kim, S.-H., Hwang, I.-R., Kim, J.-S., Jeon, S.-H., Park, B.H.: A low-temperature-grown oxide diode as a new switch element for high-density. Nonvolatile Mem. Adv. Mater. 19, 73–76 (2007)

    Article  Google Scholar 

  7. Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.-S., Park, G.-S., Lee, B., Han, S., Kim, M., Hwang, C.S.: Atomic structure of conducting nanofilaments in TiO\(_2\) resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  Google Scholar 

  8. Chagarov, E.A., Kummel, A.C.: Ab initio molecular dynamics simulations of properties of a-Al\(_2\)O\(_3\) /vacuum and a-ZrO\(_2\)/vacuum vs a-Al\(_2\)O\(_3\)/Ge(100)(2\(\,\times \, \)1) and a-ZrO\(_2\)/Ge(100)(2 \(\times \) 1) interfaces. J. Chem. Phys. 130, 124717 (2009)

    Article  Google Scholar 

  9. Chagarov, E.A., Kummel, A.C.: Molecular dynamics simulation comparison of atomic scale intermixing at the amorphous Al2O3/semiconductor interface for a-Al\(_2\)O\(_3\)/Ge, a-Al\(_2\)O\(_3\)/InGaAs, and a-Al\(_2\)O\(_3\)/InAlAs/InGaAs. Surf. Sci. 603, 3191–3200 (2009)

    Article  Google Scholar 

  10. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  11. Lewis, G.V., Catlow, C.R.A.: Potential models for ionic oxides. J. Phys. C Solid State Phys. 18, 1149 (1985)

    Article  Google Scholar 

  12. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369, 253–287 (1921)

    Article  MATH  Google Scholar 

  13. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984)

    Article  Google Scholar 

  14. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  Google Scholar 

  15. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994)

    Article  Google Scholar 

  16. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  Google Scholar 

  17. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  18. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  19. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  20. Clima, S., Chen, Y.Y., Degraeve, R., Mees, M., Sankaran, K., Govoreanu, B., Jurczak, M., De Gendt, S., Pourtois, G.: First-principles simulation of oxygen diffusion in HfOx: role in the resistive switching mechanism. Appl. Phys. Lett. 100, 133102 (2012)

    Article  Google Scholar 

  21. Rupp, J.L.M., Scherrer, B., Gauckler, L.J.: Engineering disorder in precipitation-based nano-scaled metal oxide thin films. Phys. Chem. Chem. Phys. 12, 11114 (2010)

    Article  Google Scholar 

  22. Vargas, M., Murphy, N.R., Ramana, C.V.: Structure and optical properties of nanocrystalline hafnium oxide thin films. Opt. Mater. 37, 621–628 (2014)

    Article  Google Scholar 

  23. Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000)

    Article  Google Scholar 

  24. Capron, N., Broqvist, P., Pasquarello, A.: Migration of oxygen vacancy in HfO\(_2\) and across the HfO\(_2\)/SiO\(_2\) interface: a first-principles investigation. Appl. Phys. Lett. 91, 192905 (2007)

    Article  Google Scholar 

  25. Zafar, S., Jagannathan, H., Edge, L.F., Gupta, D.: Measurement of oxygen diffusion in nanometer scale HfO\(_2\) gate dielectric films. Appl. Phys. Lett. 98, 152903 (2011)

    Article  Google Scholar 

  26. Dholabhai, P.P., Adams, J.B., Crozier, P., Sharma, R.: Oxygen vacancy migration in ceria and Pr-doped ceria: a DFT+U study. J. Chem. Phys. 132, 094104 (2010)

    Article  Google Scholar 

  27. Nolan, M., Fearon, J., Watson, G.: Oxygen vacancy formation and migration in ceria. Solid State Ion. 177, 3069–3074 (2006)

    Article  Google Scholar 

  28. Frayret, C., Villesuzanne, A., Pouchard, M., Matar, S.: Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials. Int. J. Quantum Chem. 101, 826–839 (2005)

    Article  Google Scholar 

  29. Adler, S.B., Smith, J.W.: Effects of long-range forces on oxygen transport in yttria-doped ceria: simulation and theory. J. Chem. Soc. Faraday Trans. 89, 3123–3128 (1993)

    Article  Google Scholar 

  30. Tuller, H.L., Nowick, A.S.: Small polaron electron transport in reduced CeO\(_2\) single crystals. J. Phys. Chem. Solids 38, 859–867 (1977)

    Article  Google Scholar 

Download references

Acknowledgments

This work is based on the work supported primarily by the National Science Foundation under Cooperative Agreement No. EEC-1160494. All opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing high-performance computational resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aqyan A. Bhatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, A.A., Hsieh, CC., Roy, A. et al. First-principles simulation of oxygen vacancy migration in \(\hbox {HfO}_{ x}\), \(\hbox {CeO}_{ x}\), and at their interfaces for applications in resistive random-access memories. J Comput Electron 15, 741–748 (2016). https://doi.org/10.1007/s10825-016-0847-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0847-9

Keywords

Navigation