Skip to main content

Advertisement

Log in

Baking Geophytes and Tracking Microfossils: Taphonomic Implications for Earth-Oven and Paleodietary Research

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Archaeologically oriented starch-granule and other plant-food microfossil research contribute to human subsistence studies primarily through analysis of residue adhering to plant processing tools. Little is known about whether or how plant-food microfossils may be present in remains of ancient earth ovens and other cooking facilities. Earth ovens with rock heating elements are found worldwide, especially in savannah and fuel-poor regions; they date to about 30,000 and 9,000 years old in the Old and New Worlds, respectively. Earth-oven baking is a cooking technology that effectively increases the availability of food in a given area by affording nutritional access to difficult-to-cook or toxic plant foods that would otherwise be indigestible. It effectively increases a landscape’s capacity to support population growth. Conventional-oven and lab-oven baking experiments assess the potential of ancient earth ovens to yield identifiable microfossils of underground storage organs (USOs) baked therein. During 15 min to 12 h of baking at 135–150 °C, identifiable and degraded USO microfossils accumulated as part of baking residue on cloth coverings, leafy packing materials, the inside of the containers, and on suspended microscope slides. Results of these taphonomic experiments indicate that an abundance of microfossils, including starch granules, phytoliths, raphides, and plant tissue, are emitted from USOs during the baking process. As hypothesized, these microfossils should be mobilized and dispersed in earth ovens per se during baking, primarily via liquid and vapor forms of water. Illuviation and other transformation processes are expected to redeposit baked, yet still identifiable, plant-food microfossils on heating-element rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acuña, L. I. (2006). The economic contribution of root foods and other geophytes in prehistoric Texas. Unpublished MA thesis, Department of Anthropology. San Marcos: Texas State University.

    Google Scholar 

  • Al-Tardeh, S., Sawidis, T., Diannelidis, B.-E., & Delivopoulos, S. (2006). Anatomical studies on the adventitious roots of the geophyte Urginea maritime (l.) Baker. Journal of Biological Research, 5, 61–70.

    Google Scholar 

  • Al-Tardeh, S., Sawidis, T., Diannelidis, B.-E., & Delivopoulos, S. (2008). Water content and reserve allocation patterns within the bulb of the perennial geophyte red squill (Liliaceae) in relation to Mediterranean climate. Botany, 86, 292–299.

    Google Scholar 

  • Babot, M. P. (2003). Starch grain damage as an indicator of food processing. In D. M. Hart & L. A. Wallas (Eds.), Phytoliths and starch research in the Australian-Pacific-Asian regions: the state of the art (pp. 69–81). Canberra: Pendanus Books.

  • Barton, H. (2009). Starch granule taphonomy: the results of a two year field experiment. InM.Haslam, G. Robertson, A. Crowther, S. Nugent, L Kirkwood (Eds.), Archaeological science under a microscope: studies in residue and ancient DNA analysis in honour of Thomas H. Loy(pp. 129-140). Australian National University E Press: Canberra, ACT

  • Barton, H., & Matthews, P. J. (2006). Taphonomy. In R. Torrence & H. Barton (Eds.), Ancient starch research (pp. 75–94). Walnut Creek: Left Coast Press, Inc.

    Google Scholar 

  • Binford, L. R. (2001). Constructing frames of reference: an analytical method for archaeological theory building using hunter-gatherer and environmental data sets. Berkeley: University of California Press.

    Google Scholar 

  • Black, S.L., Creel, D.G. (1997). The central Texas burned rock midden reconsidered. InS.L. Black, L.W. Ellis, D.G. Creel, G.T. Goode (Eds.), Hot rock cooking on the greater Edwards Plateau: four burned rock midden sites inwest central Texas (pp. 269–314). Austin, Texas: Studies in Archeology 22, Vol.1,Texas Department of Transportation, Environmental Affairs Division and Austin, Texas: The University of Texas, Archeological Research Laboratory, Archeological Studies Program, Report 2.

  • Black, S. L., & Thoms, A. V. (2014). Hunter-gatherer earth ovens in the archaeological record: fundamental records. American Antiquity, 79(2), 203–226.

    Article  Google Scholar 

  • Bot, A., & Benites, J. (2005). The importance of soil organic matter: key to drought-resistant soil and sustained food production. FAO Soils Bulletin, 80.

  • Boyd, D.K., Mehalchick, G., Kibler, K.W. (2004). Rethinking Paluxy site archaeology. In G. Mehalchick, D.K. Boyd, K.W. Kibler, S.W. Ringstaff(Eds.), Shifting sandsand geopyhtes: geoarchaeological investigations at Paluxy sites on Fort Hood (pp. 199–224). Fort Hood Texas: archeological resource management series, United States Army Fort Hood, Research Report 48.

  • Brace, C. L. (1967). Environment, tooth form and size in the Pleistocene. Journal of Dental Research, 46(5), 809–816.

    Article  Google Scholar 

  • Brace, C. L. (1980). Australian tooth-size and the death of a stereotype. Current Anthropology, 21, 141–164.

    Article  Google Scholar 

  • Brace, C. L. (2005). “Neutral theory” and the dynamics of the evolution of “modern” human morphology. Human Evolution, 20(1), 19–38.

    Article  Google Scholar 

  • Brace, C. L., Seguchi, N., & Brace, M. L. (2008). Exploring the Kennewick connection. In H. Burke, D. Smith, D. Lippert, J. Watkins, & L. Zimmerman (Eds.), Kennewick man: perspectives on the ancient one (pp. 153–168). Walnut City: Left Coast Press.

    Google Scholar 

  • Bradbury, J. H., Bradshaw, K., Jealous, W., Holloway, W. D., & Phimpisane, T. (1988). Effects of cooking on nutrient content of tropical root crops from the South Pacific. Journal of the Science of Food and Agriculture, 43, 333–342.

    Article  Google Scholar 

  • Brewer, R. (1960). Cutans: their definition, recognition, and interpretation. Jouranal of Soil Science, 11(2), 280–292.

    Article  Google Scholar 

  • Briuer, F. (1976). New clues to stone tool function: plant and animal residues. American Antiquity, 41(4), 478–483.

    Article  Google Scholar 

  • Bryant, V. M., Jr. (1974). Prehistoric diet in southwest Texas: the coprolite evidence. American Antiquity, 39(3), 407–420.

    Article  Google Scholar 

  • Bryant, V. M., Jr. (2007a). Little things mean a lot: the search for starch granules at archaeological sites. Mammoth Trumpet, 22(3), 28–29.

    Google Scholar 

  • Bryant, V. M., Jr. (2007b). Microscopic evidence for the domestication and spread of maize. Proceedings of the National Academy of Science, 104(50), 19659–19660.

    Article  Google Scholar 

  • Chandler-Ezell, K., Pearsall, D. M., & Zeidler, J. A. (2006). Root and tuber phytoliths and starch grains document manioc (Manihot esculenta), arrowroot (Maranta arundinacea), and lleren (Calathea sp.) at the Real Alto site, Ecuador. Economic Botany, 60(2), 103–120.

    Article  Google Scholar 

  • Chatters, J. C., Kennett, D. J., Asmerom, Y., Kemp, B. M., Polyak, V., Blank, A. N., Beddows, P. A., Reinhardt, E., Arroyo-Cabrales, J., Bolnick, D. A., Malhi, R. S., Culleton, B. J., Erreguerena, P. L., Rissolo, D., Morell-Hart, S., & Stafford, T. W., Jr. (2014). Science, 344, 75–754.

    Article  Google Scholar 

  • Cohen, M. N. (1977). The food crisis in prehistory. New Haven: Yale University Press.

    Google Scholar 

  • Coil, J., Korstanje, M. A., Archer, A., & Hastorf, C. A. (2003). Laboratory goals and considerations for multiple microfossil extraction in archaeology. Journal of Archeological Science, 30, 991–1008.

    Article  Google Scholar 

  • Collins, M. J., & Copeland, L. (2011). Ancient starch: cooked or just old? Proceedings of the National Academy of Science, 108, E145.

    Article  Google Scholar 

  • Cromack, K., Jr., Sollins, P., Todd, R. L., Fogel, R., Todd, A. W., Fender, W. M., Crossley, M. E., & Crossley, D. A., Jr. (1977). The role of oxalic acid and bicarbonate in calcium cycling by fungi and bacteria: some possible implications for soil animals. Soil Organisms as Components of Ecosystems, Ecological Bulletin, 25, 246–252.

    Google Scholar 

  • Crowther, A. (2009). Morphometric analysis of calcium oxalate raphides and assessment of their taxonomic value for archaeological microfossil studies. In M. Haslam, G. Robertson, A. Crowther, S. Nugent, & L. Kirkwood (Eds.), Archaeological science under a microscope: studies in residue and ancient DNA analysis in honour of Thomas H. Loy (pp. 47–79). Canberra: Australian National University E Press.

    Google Scholar 

  • Cummings, L.S. (1994). Phytolith, starch, and blood residue analysis of artifacts from site 41MU55, Texas. In A.V. Thoms (Ed.), The Valley Branch archaeological project: excavations at an archaic site (41MU55) in the Cross Timbers uplands, north-central Texas(pp. 339-354). College Station, Texas: Archaeological Research Laboratory, Reports of Investigation 15, Texas A&M University.

  • Cummings, L. S. (2006). Poverty Point objects. In R. Torrence & H. Barton (Eds.), Ancient starch research (pp. 183–184). Walnut Creek: Left Coast Press, Inc.

    Google Scholar 

  • Dering, J. P. (2008). Late prehistoric subsistence economy on the Edwards Plateau. Plains Anthropologist, 53, 59–78.

    Article  Google Scholar 

  • Dering, J. P., & Shafer, H. J. (1976). Analysis of matrix samples from Crockett County shelter: a test of seasonality. Bulletin of the Texas Archaeological Society, 47, 209–229.

    Google Scholar 

  • Dhyani, A., Bahuguna, Y. Y., Semwal, D. P., Nautiyal, B. P., & Nautiyal, M. C. (2009). Anatomical features of Lilium polyphyllum D. Don ex Royle (Liliaceae). Journal of American Science, 5(5), 85-–90.

    Google Scholar 

  • Dogome, H. (2000). Summary (in English). In M. Tane (Ed.), The Yokomine C Site (in Japanese) (pp. 1–2). Torai: Town Board of Education.

    Google Scholar 

  • Driver, H.E., Massey, W.C. (1957). Comparative studies of North American Indians, part 2 Transactions of the American Philosophical Society, New Series, vol. 47.Philadelphia: AmericanPhilosophical Society.

  • Dudgeon, J.V. and Tromp, M. (2012). Diet, geography and drinking in Polynesia: microfossil research from archaeological human dental calculus, Rapa Nui (Easter Island). International Journal of Osteoarchaeology. DOI: 10.1002/oa.2249, Wiley Online Library.

  • Eliasson, A.-C., & Karlsson, R. (1983). Gelatinization properties of different size classes of wheat starch granules measured with differential scanning calorimetry. Starch/Stärke, 35, 130–133.

    Article  Google Scholar 

  • Ellis, L.W. (1997). Hot rock technology. In S.L. Black, L.W. Ellis, D.G. Creel, G.T. Goode (Eds.), Hot rock cooking on the greater Edwards Plateau: four burned rock midden sites in west central Texas(pp. 43–81). Austin Texas: Studies in Archeology, Vol. 22, Environmental Affairs Division,Texas Department of Transportation and Austin Texas: Archeological Studies Program, Report 2, The University of Texas, Texas Archeological Research Laboratory.

  • Esau, K. (1965). Plant anatomy. New York: Wiley.

    Google Scholar 

  • Fick, W. H., & Nolte, D. L. (1986). Field collection techniques for total nonstructural carbohydrate analysis of plant storage organs. Transactions of the Kansas Academy of Science, 89(1–2), 40–44.

    Article  Google Scholar 

  • Field, J. (2006). Reference collections. In R. Torrence & H. Barton (Eds.), Ancient starch research (pp. 95–113). Walnut Creek: Left Coast Press, Inc.

    Google Scholar 

  • Field, J. (2008). Starch grain analysis. In D. M. Pearsall (Ed.), Encyclopedia of archaeology (pp. 2078–2082). San Diego: Elsevier Science & Technology Books.

    Chapter  Google Scholar 

  • Fullagar, R. (2006). Starch on artifacts. In R. Torrence & H. Barton (Eds.), Ancient starch research (pp. 177–203). Walnut Creek: Left Coast Press, Inc.

    Google Scholar 

  • Goldberg, P., & Macphail, R. I. (2003). Short contribution: strategies and techniques in collecting micromorphology samples. Geoarchaeology, 18, 571–578.

    Article  Google Scholar 

  • Gose, W. A. (2000). Paleomagnetic studies of burned rocks. Journal of Archaeological Science, 27, 409–421.

    Article  Google Scholar 

  • Gott, B., Barton, H., Samuel, D., & Torrence, R. (2006). Biology of starch. In R. Torrence & H. Barton (Eds.), Ancient starch research (pp. 35–45). Walnut Creek: Left Coast Press, Inc.

    Google Scholar 

  • Greathouse, G. A., & Rigler, N. E. (1941). Alkaloids from Zephyranthes texana, Cooperia pedunculata and other Amaryllidaceae and their toxicity. American Journal of Botany, 28, 702–704.

    Article  Google Scholar 

  • Guy, J. (1998).Analysis of cultural and natural features. In M.B. Collins(Ed.), Wislon-Leonard: an 11,000 year archaeological record of hunter-gatherers in central Texas, Vol. IV, Archaeological Features and Technical Analyses, (pp. 1067-1207). Austin, Texas: Studies in Archaeology 31, Texas Archaeological Research Laboratory, The University of Texas at Austin and Archaeological Studies Program, Report 10, Environmental Affairs Division, Texas Department of Transportation.

  • Hammatt, H. H. (1976). The Gore Pit site: an archaic occupation in southwestern Oklahoma and a review of the archaic stage in the Southern Plains. Plains Anthropologist, 21, 245–277.

    Google Scholar 

  • Hardy, K., Blakeney, T., Copeland, L., Kirkham, J., Wrangham, R., & Collins, M. (2009). Starch granules, dental calculus and new perspectives on ancient diet. Journal of Archaeological Science, 36, 28–255.

    Article  Google Scholar 

  • Haslam, M. (2004). The decomposition of starch granules in soils: implications for archaeological residue studies. Journal of Archaeological Science, 31, 1715–1734.

    Article  Google Scholar 

  • Haslam, M. (2006). Potential misidentification of in situ archaeological tool-residues: starch and conidia. Journal of Archaeological Science, 33, 114–121.

    Article  Google Scholar 

  • Haslam, M. (2009a). Initial tests on the three-dimensional movement of starch in sediments. In A. Fairbairn, S. O’Connor, & B. Marwick (Eds.), New direction in archaeological science, Terra Austrails28 (pp. 93–103). Canberra: ANUE Press.

    Google Scholar 

  • Haslam, M. (2009b). Mountains and molehills: sample size in archaeological microscopic stone-tool residue analysis. In M. Haslam, G. Robertson, A. Crowther, S. Nugent, L. Kirkwood (Eds.), Archaeological science under a microscope: studies in residue and ancient DNA analysis in honour of Thomas H. Loy(pp. 47-79). Canberra, ACT:Australian National University E Press.

  • Haslam, M.,& Crowther, A. (2009). Preface. In M. Haslam, G. Robertson, A. Crowther, S. Nugent, L. Kirkwood (Eds.), Archaeological science under a microscope: studies in residue and ancient DNA analysis in honour of Thomas H. Loy (pp. 1-3).Canberra, ACT:Australian National University E Press.

  • Haynes, R. J., & Francis, G. S. (1993). Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. European Journal of Soil Science, 44(4), 665–675.

    Article  Google Scholar 

  • Henry, A.G., Brooks, A.S., Piperno D.R. (2011a). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Science, 108, 486–491.

  • Henry, A. G., Brooks, A. S., & Piperno, D. R. (2011b). Reply to Collins and Copeland: spontaneous gelatinization not supported by evidence. Proceedings of the National Academy of Science, 108(22), E146.

    Article  Google Scholar 

  • Henry, A. G., Hudson, H. F., & Piperno, D. R. (2009). Changes in starch granule morphologies from cooking. Journal of Archaeological Science, 36, 915–922.

    Article  Google Scholar 

  • Henry, A. G., & Piperno, D. R. (2008). Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqa’i. Journal of Archaeological Science, 35, 1943–1950.

    Article  Google Scholar 

  • Henry, A. G., Ungar, P. S., Passey, B. H., Sponheimer, M., Rossouw, L., Bamford, M., Sandberg, P., de Ruiter, D. J., & Berger, L. (2012). The diet of Australopithecus sediba. Nature. doi:10.1038/nature11185.

    Google Scholar 

  • Homsey, L. K. (2009). The identification and prehistoric selection criteria for fire-cracked rock: an example from Dust Cave, Alabama. Southeastern Archaeology, 28(1), 101–116.

    Google Scholar 

  • Horrocks, M. (2005). A combined procedure for recovering phytoliths and starch residues from soils, sedimentary deposits and similar materials. Journal of Archaeological Science, 32, 1169–1175.

    Article  Google Scholar 

  • Horrocks, M., Shane, P. A., Barber, I. G., D’Costa, D. M., & Nichol, S. L. (2004). Microbotantical remains reveal Polynesian agriculture and mixed cropping in early New Zealand. Review of Paleobotany and Palynology, 131, 147–157.

    Article  Google Scholar 

  • Jackson, M. A. (1998). The nature of fire-cracked rock: new insights from ethnoarchaeological and laboratory experiments. Unpublished MA thesis, Department of Anthropology. College Station: A&M University.

    Google Scholar 

  • Jones, J. G., & Bryant, V. M., Jr. (1992). Phytolith taxonomy in selected species of Texas cacti. In G. Rapp Jr. & S. C. Mulholland (Eds.), In Phytolith Systematics (pp. 215–238). New York: Plenum Press.

    Chapter  Google Scholar 

  • Klein, R. G., & Edgar, B. (2002). The dawn of human culture. New York: Wiley.

    Google Scholar 

  • Konlande, J. E., & Robson, J. R. K. (1972). The nutritive value of cooked camas as consumed by Flathead Indians. Ecology of Food and Nutrition, 2, 193–195.

    Article  Google Scholar 

  • Kumar, S., & Aalbersberg, B. (2006). Nutrient retention in foods after earth-oven cooking compared to other forms of domestic cooking: proximate, carbohydrates and dietary fiber. Journal of Food Composition and Analysis, 19, 302–310.

    Article  Google Scholar 

  • Kuhnlein, H. V. (1986). Food sample collection for nutrient analyses in ethnobiological studies. Journal of Ethnobiology, 6(1), 19–25.

    Google Scholar 

  • Langejans, G. H. J. (2010). Remains of the day-preservation of organic micro-residues on stone tools. Journal of Archaeological Science, 37, 971–985.

    Article  Google Scholar 

  • Laurence, A. R., Thoms, A. V., Bryant, V. M., & McDonough, C. (2011). Airborne starch granules as a potential contamination source at archaeological sites. Journal of Ethnobiology, 31, 212–232.

    Article  Google Scholar 

  • Lin, S., Hsieh, F., & Huff, H. E. (1997). Effects of lipids and processing conditions on degree of starch gelatinization of extruded dry pet foods. LWT--Food Science and Technology, 30, 754–761.

    Article  Google Scholar 

  • Leach, J. D., Gibson, G. R., & Loo, J. V. (2006). Human evolution, nutritional ecology and prebiotics in ancient diet. Bioscience and Microflora, 25, 1–8.

    Article  Google Scholar 

  • Loy, T. H. (1994a). Residue analysis of artifacts and burned rock from the Mustang Branch and Barton sites (41HY209 and 41HY202). In R.A. Ricklis, M.B. Collins (Eds.), Archaic and late prehistoric human ecology in the middle Onion Creek Valley, Hays County, Texas (pp. 607-627). Studies in Archaeology, Report 19. Austin: Texas Archaeological Research Laboratory, The University of Texas at Austin.

  • Loy, T. H. (1994b). Methods in the analysis of starch residues on prehistoric stone tools. In J. G. Hather (Ed.), Tropical archaeobotany: applications and new development(pp (pp. 86–114). London: Routledge.

    Google Scholar 

  • Loy, T. H., Spriggs, M., & Wickler, S. (1992). Direct evidence for human use of plants 28,000 years ago: starch residues on stone artifacts from the Northern Solomon Islands. Antiquity, 66, 898–912.

    Google Scholar 

  • Lund, D. (1984). Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization. Critical Reviews in Food Science and Nutrition, 20(4), 249–273.

    Article  Google Scholar 

  • Martin, J. P. (1945). Microorganisms and soil aggregation: I. Origin and nature of some of the aggregating substances.Soil. Science, 59(2), 63–174.

    Google Scholar 

  • Martin, J. P. (1946). Microorganisms and soil aggregation: II. Influences of bacterial polysaccharides on soil structure. Soil Science, 61(2), 157–166.

    Article  Google Scholar 

  • McNair, J. B. (1930). The Differential Analysis of Starches. Botanical Series, 9(1). Chicago: Field Museum of Natural History.

    Book  Google Scholar 

  • Mellars, P. (1996). The Neanderthal legacy: an archeological perspective from western Europe. Princeton: Princeton University Press.

    Google Scholar 

  • Messner, T. C. (2011). Acorns and bitter root: starch grain research in the prehistoric Eastern Woodlands. Tuscaloosa: University of Alabama Press.

    Google Scholar 

  • Messner, T. C., & Schindler, B. (2010). Plant processing strategies and their affect upon starch granule survival when rendering Peltandra virginica (L.) Kunth, aracea edible. Journal of Archaeological Science, 37, 228–236.

    Article  Google Scholar 

  • Miller, W. B. (1992). A review of carbohydrate metabolism in geophytes. Acta Horticulturae (ISHS), 325, 239–249.

    Article  Google Scholar 

  • Monje, P. V., & Baran, E. J. (2002). Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiology, 128, 707–713.

    Article  Google Scholar 

  • Movius Jr., H.L. (1966). The hearths of the upper Perigordian and Aurignacian horizons at the Abri Pataud, Les Eyzies (Dordogne), and their possible significance. American Anthropologist,No. 2, Part 2: Recent Studies in Paleoanthropology, 68, 296–325.

  • Nakazawa, Y., Straus, L. G., Gonzalez-Morales, M. R., Solana, D. C., & Saiz, J. C. (2009). On stone-boiling technology in the Upper Paleolithic: behavorial implications from an Early Magdalenian hearth in El Miron, Cave, Cantabria, Spain. Journal of Archaeological Science, 36, 684–693.

    Article  Google Scholar 

  • Nelson, K. (2010). Environment, cooking strategies and containers. Journal of Anthropological Archaeology, 29, 238–247.

    Article  Google Scholar 

  • Nugent, S. J. (2006). Applying use-ware and residue analyses to digging sticks. Memoirs of the Queensland Museum Cultural Heritage Series, 4(1), 89–105.

    Google Scholar 

  • Odell, T. H. (2004). Lithic analysis. New York: Kluwer Academic/Plenum Publishers.

    Book  Google Scholar 

  • Peacock, S. L. (2008). From complex to simple: balsamroot, inulin, and the chemistry of traditional Interior Salish pit-cooking technology. Botany, 86, 116–128.

    Article  Google Scholar 

  • Pearsall, D. M. (2000). Paleoethnobotany: a handbook of procedures. San Diego: Academic Press.

    Google Scholar 

  • Pearson, G. A. (1999). Early occupations and cultural sequences at Moose Creek, a late Pleistocene site in central Alaska. Arctic, 52, 332–345.

    Article  Google Scholar 

  • Pennisi, E. (1999). Did cooked tubers spur the evolution of big brains? Science, 283(5410), 2004–2005.

    Article  Google Scholar 

  • Perry, L. (2004). Starch analysis reveals the relationship between tool type and function: an example from the Orinoco Valley, Venezuela. Journal of Archaeological Science, 31(8), 1069–1081.

    Article  Google Scholar 

  • Perry, L. (2005). Reassessing the traditional interpretation of “manioc” artifacts in the Orinoco Valley of Venezuela. Latin American Antiquity, 16(4), 409–426.

    Article  Google Scholar 

  • Perry, L. (2007). Starch granules, preservation biases, and plant histories: an Example from Highland Peru. In T. Denham, L. Vrydaghs, J. Iriarté J. (Eds), Rethinking agriculture: archaeological and ethnographic perspectives(pp. 242-255). Walnut Creek, California:One World Archaeology, Left Coast Press.

  • Perry, L. (2010). Starch analyses from the BLM Landis site. In M. Quigg, C.D. Frederick, P.M. Matchen, K.G. DuBois (Eds.) Landis property: data recovery at three prehistoric sites (41PT185, 41PT186, and 41PT245)in Potter County, Texas(pp.767-790). TRC Report No. 150832. Austin, Texas: TRC Environmental Corporation

  • Perry, G. H., Dominy, N. I. J., Claw, K. G., Lee, A. S., Fiegler, H., Redon, R., Wener, J., Villanea, F. A., Mountain, J. L., Misra, R., Carter, N. P., Lee, C., & Stone, A. C. (2007). Diet and the Evolution of human amylase gene copy number variation. Nature Genetics, 39(10), 1256–1260.

    Article  Google Scholar 

  • Petraglia, M. D. (2002). The heated and the broken: thermally altered stone, human behavior, and archaeological site formation. North American Archaeologist, 23, 241–269.

    Article  Google Scholar 

  • Piperno, D. R. (2006). Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Lanham: Altamira Press.

    Google Scholar 

  • Piperno, D. R., Ranere, A. J., Holst, I., Iriate, J., & Dickau, R. (2009). Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River valley, Mexico. Proceedings of the National Academy of Science, USA, 106, 5019–5024.

    Article  Google Scholar 

  • Piperno, D. R., Weiss, E., Holst, I., & Nadel, D. (2004). Processing of wild cereal grains in the upper Paleolithic revealed by starch grain analysis. Nature, 430, 670–673.

    Article  Google Scholar 

  • Primo-Martin, C., van Nieuwenhuijzen, N. H., Hamer, R. J., & van Vliet, T. (2007). Crystallinity changes in wheat starch during bread-making process: starch crystallinity in bread crust. Journal of Cereal Science, 45, 219–226.

    Article  Google Scholar 

  • Ranwala, A. P., & Miller, W. B. (2008). Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange chromatography with pulsed amperometric detection. New Phytologist, 180, 421–433.

    Article  Google Scholar 

  • Raunkiaer, C. (1934). The life forms of plants and statistical plant geography. Oxford: Clarendon Press.

    Google Scholar 

  • Reeves, B. O. K. (1990). Communal bison hunters of the Northern Plains. In L. B. Davis & B. O. K. Reeves (Eds.), Hunters of the recent past(pp (pp. 168–194). London: Unwin Hyman.

    Google Scholar 

  • Reichert, E. T. (1913). The differentiation and specificity of starches in relation to genera, species, etc. Washington D.C: The Carnegie Institution of Washington.

    Google Scholar 

  • Reinhard, K.J., Mendonça de Souza, S.F., Rodrigues, C., Kimerle, E., Dorsey-Vinton, S. (2001). Microfossils in dental calculus: a new perspective on diet and dental disease. In E. Williams, (Ed.), Human remains: conservation, retrieval and analysis. Proceedings of a conference held in Williamsburg, VA, November 1999 (pp. 113–118). Oxford: British Archaeological Reports-International Series 934.

  • Riley, C. K., Adebayo, S. A., Wheateley, A. O., & Asemota, H. N. (2006). Fundamental and derived properties of yam (Diosocrea Spp.) starch powders and implications in tablet and capsule formulation. Starch-Sträke, 58, 418–424.

    Article  Google Scholar 

  • Samuel, D. (2006). Modified starch. In R. Torrence & H. Barton (Eds.), Ancient starch research (pp. 205–216). Walnut Creek: Left Coast Press, Inc.

    Google Scholar 

  • Shafer, H.S., Holloway, R.G. (1979). Organic residue analysis in determining stone tool function. In B. Hayden (Ed.),Lithic Use-Ware Analysis(pp. 385-400). New York:Academic Press.

  • Simms, S. R., Berna, F., & Bey, G. J., III. (2013). A prehispanic Maya pit oven? Microanalysis of fired clay balls from the Puuc region, Yucatán, Mexico. Journal of Archaeological Science, 40, 1144–1157.

    Article  Google Scholar 

  • Smith, C. S., Martin, W., & Johansen, K. A. (2001). Sego Lilies and prehistoric foragers: return rates, pit ovens and carbohydrates. Journal of Archaeological Science, 28, 169–183.

    Article  Google Scholar 

  • Soler Mayor, B. (1996). Standardization Proposal on the Recognition and Diagnosis of the Thermal Alteration of Carbonaceous Rocks in Archaeological Context (in Spanish). Unpublished PhD Dissertation. Valencia, Spain: Department of Prehistory and Archaeology, University of Valencia.

  • Speth, J. D., Newlander, K., White, A. A., Lemke, A. K., & Anderson, L. E. (2013). Early Paleindian big-game hunting in North America: provisioning or politics? Quaternary International, 285, 111–139.

    Article  Google Scholar 

  • Stark, R. T. (2002). Comidas de la Tierra: an ethnoarchaeology of earth ovens. Unpublished PhD dissertation. Department of Anthropology. Austin: The University of Texas.

    Google Scholar 

  • Stiner, M. C., Gopher, A., & Barkai, R. (2011). Hearth-side socioeconomics, hunting and paleoecology during the late Lower Paleolithic at Qesem Cave, Israel. Journal of Human Evolution, 60, 213–233.

    Article  Google Scholar 

  • Straus, L. G. (2006). Of stones and bones: interpreting site function in the Upper Paleolithic and Mesolithic of Western Europe. Journal of Archaeological Science, 25, 500–509.

    Google Scholar 

  • Şumnu, G., Ndife, M. K., & Bayindirli, L. (1999). Effects of sugar, protein, and water content on wheat starch gelatinization due to microwave heating. European Food Research and Technology, 209, 68–71.

    Article  Google Scholar 

  • Therin, M. (1998). The movement of starch grains in sediments. In R. Fullagar (Ed.), A closer look: recent Australian studies of stone tools (pp. 61–72). Sidney: Archaeological Computing Laboratory, University of Sidney.

    Google Scholar 

  • Therin, M., Fullagar, R., & Torrence, R. (1999). Starch in sediments: a new approach to the study of subsistence and land use in Papua New Guinea. In C. Gosden & J. Heather (Eds.), The prehistory of food: appetites for change (pp. 438–462). London: Rutledge.

    Google Scholar 

  • Thoms, A. V. (1989). The northern roots of hunter-gatherer intensification: camas and the Pacific Northwest. Unpublished Ph.D. dissertation, Department of Anthropology. Pullman: Washington State University.

    Google Scholar 

  • Thoms, A.V. (2003). Cook-stone technology in North America: evolutionary changes in domestic fire structures during the Holocene. In M. Frere-Sautot (Ed.), Le Feu Domestique et ses Structures au Neolithique et aux Ages des Metaux(pp. 87–96), Collections Prehistoires No. 9. Saint-Apollinaire, France:Editions Monique Mergoil.

  • Thoms, A. V. (2007). Fire-cracked rock features on sandy landforms in the northern Rocky Mountains: toward establishing reliable frames of reference for assessing site integrity. Geoarchaeology, 22, 477–510.

    Article  Google Scholar 

  • Thoms, A. V. (2008a). Ancient savannah roots of the carbohydrate revolution in south-central North America. Plains Anthropologist, 53, 121–136.

    Article  Google Scholar 

  • Thoms, A. V. (2008b). The fire stones carry: ethnographic records and archaeological expectations for hot-rock cookery in western North America. Journal of Anthropological Anthropology, 27, 443–460.

    Article  Google Scholar 

  • Thoms, A. V. (2009). Rocks of ages: propagation of hot-rock cookery in Western North America. Journal of Archaeological Science, 36(3), 573–591.

    Article  Google Scholar 

  • Thoms, A. V., Laurence, A. R., Kamiya, M., & Bryant, V. M., Jr. (2011). Poster presentation, Paleoethnobotanical poster session, 76th annual meeting of the Society for American Archaeology. Sacramento: California. Experimentally tracking geophyte microfossils from raw to baked-residue status.

    Google Scholar 

  • Torrence, R., Barton, H. (Eds.) (2006). Ancient starch research. Walnut Creek, California:Left Coast Press, Inc.

  • Torrence, R., Neal, V., Doelman, T., Rhodes, E., McKee, C., Davies, H., Bonetti, R., Gugliemetti, A., Manzoni, A., Oddone, M., Parr, J., & Wallace, C. (2004). Pleistocene colonisation of the Bismarck Archipelago: new evidence from West New Britain. Oceania, 39, 101–130.

    Google Scholar 

  • Van der Toorn, A., Zemah, H., Van As, H., & Kamenetsky, R. (2000). Developmental change and water status in tulip bulbs during storage: visualization by NMR imaging. Journal of Experimental Botany, 51(138), 1277–1287.

    Article  Google Scholar 

  • Wandsnider, L. (1997). The roasted and the boiled: food composition and heat treatment with special emphasis on pit-hearth cooking. Journal of Anthropological Archaeology, 16, 1–48.

    Article  Google Scholar 

  • Webster, E. A., Tilston, E. L., Chudek, J. A., & Hopkins, D. W. (2008). Decomposition in soil and chemical characteristics of pollen. European Journal of Soil Science, 59, 551–558.

    Article  Google Scholar 

  • Wesolowski, V., Mendonca de Sousa, S. M. F., Reinhard, K. J., & Ceccantini, G. (2010). Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science, 37, 136–1338.

    Article  Google Scholar 

  • Willey, G. R., & Phillips, P. (1958). Method and theory in American archaeology. Chicago: University of Chicago Press.

    Google Scholar 

  • Wissler, C. (1940). Indians of the United States. Garden City: Doubleday & Company.

    Google Scholar 

  • Wrangham, R. (2009). Catching fire: how cooking made us human. New York: Basic Books.

    Google Scholar 

  • Yanovsky, E., & Kingsbury, R. M. (1938). Analyses of some Indian food plants. Association of Official Agricultural Chemists, 21(4), 648–665.

    Google Scholar 

Download references

Acknowledgments

Research for this paper was funded or otherwise supported by the US Army Cultural Resources Program at Fort Hood, Texas, Prewitt & Associates, Inc., Austin, Texas, and the Archaeological Ecology Laboratory and Department of Anthropology at Texas A&M University. Marion Coe drew the sketches comprising Fig. 11. Discussions with colleagues helped to fine-tune some of our arguments, especially conversations with Steve Black, Douglas Boyd, Vaughn Bryant, Linda Scott Cummings, Karl Kibler, Cassandra McDonough, John Montgomery, Linda Perry, Michael Quigg, and Timothy Riley. Our paper also benefited substantially from comments by anonymous reviewers of an earlier version as well as by three anonymous reviewers of the present version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alston V. Thoms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoms, A.V., Laurence, A.R., Short, L. et al. Baking Geophytes and Tracking Microfossils: Taphonomic Implications for Earth-Oven and Paleodietary Research. J Archaeol Method Theory 22, 1038–1070 (2015). https://doi.org/10.1007/s10816-014-9216-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-014-9216-9

Keywords

Navigation