Skip to main content
Log in

Chemical state of the surface of mechanically activated Mn m O n oxides

  • Published:
Journal of Applied Spectroscopy Aims and scope

X-ray photoelectron spectroscopy is used to study Mn3O4, Mn2O3, and MnO2 manganese oxide surfaces subjected to mechanical activation by means of high intensity grinding. It is found that Mn2O3 is the most thermodynamically stable of these oxides; mechanical activation converts the surface layers of Mn3O4 and MnO2 into this intermediate oxide. The chemical stability of activated Mn2O3 with respect to actions of the environment was considerably elevated. This result is explained in terms of features of the structural state of the mechanically activated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Gellings and H. J. M. Bouwmeester, Catal. Today, 12, No. 1, 1–101 (1992).

    Article  Google Scholar 

  2. T. Yamashita and A. Vannice, J. Catal., 163, No. 1, 158–168 (1996).

    Article  Google Scholar 

  3. Y. Hirao, C. Yokoyama, and M. Misono, Chem. Commun., 5, 597–598 (1996).

    Article  Google Scholar 

  4. J. G. Wu, S. B. Li, J. Z. Niu, and X. P. Fang, Appl. Catal. A: Gen., 124, No. 1, 9–18 (1995).

    Article  Google Scholar 

  5. F. Kapteijn, L. Singoredjo, N. J. J. Dekker, and J. A. Moulijn, Ind. Eng. Chem. Res., 32, 445–452 (1993).

    Article  Google Scholar 

  6. A. K. H. Nohman, M. I. Zaki, S. A. A. Mansour, R. B. Fahim, and C. Kappenstein, Thermochim. Acta, 210, 103–121 (1992).

    Article  Google Scholar 

  7. M. I. Zaki and C. Kappenstein, Z. Phys. Chem., 176, No. 1, 97–116 (1992).

    Article  Google Scholar 

  8. A. Bielanski and J. Haber, Catal. Rev. Sci. Eng., 19, No. 1, 1–41 (1979).

    Article  Google Scholar 

  9. A. Bielanski and J. Haber, Oxygen in Catalysis, Marcel Dekker Inc., New York (1991).

    Google Scholar 

  10. M. I. Zaki, M. A. Hasan, L. Pasupulety, and K. Kumari, New J. Chem., 22, 875–882 (1998).

    Article  Google Scholar 

  11. A. I. Ancharov, V. M. Aul’chenko, A. P. Barinova, L. E. Bodrova, N. A. Vatolin, P. A. Vityaz’, I. A. Vorsina, V. B. Vykhodets, B. A. Gizhevskii, T. F. Grigor’eva, A. V. Dolmatov, E. P. Elsukov, V. I. Zhornik, R. G. Zakharov, A. F. Il’yushchenko, I. É. Ignat’ev, E. V. Ignat’eva, Yu. D. Kaminskii, T. Yu. Kiseleva, G. N. Kulipanov, S. A. Kovaleva, Yu. V. Kontsevoi, T. E. Kurennykh, L. I. Leont’ev, A. I. Letsko, S. F. Lomaeva, N. Z. Lyakhov, E. V. Mosunov, A. A. Novakova, V. N. Parmon, É. A. Pastukhov, S. A. Petrova, É. A. Popova, I. L. Simakova, M. N. Simonov, T. L. Talako, B. P. Polochko, A. V. Fetisov, A. Ya. Fishman, S. V. Tsybulya, M. P. Sharafutdinov, K. D. Becker, V. Šepelák, Mechanocomposites — Precursors for Creating Materials with New Properties [in Russian], SO RAN, Novosibirsk (2010).

    Google Scholar 

  12. V. R. Galakhov, M. Demeter, S. Bartkowski, M. Neumann, N. A. Ovechkina, E. Z. Kurmaev, N. I. Lobachevskaya, Ya. M. Mukovskii, J. Mitchell, and D. L. Ederer, Phys. Rev. B, 65, 113102-1–113102-4 (2002).

    Google Scholar 

  13. H. W. Nesbitt and D. Banerjee, Am. Mineral., 83, 305–315 (1998).

    Google Scholar 

  14. C. Demangeat and J. C. Parlebas, Rep. Prog. Phys., 65, 1679–1739 (2002).

    Article  ADS  Google Scholar 

  15. A. V. Fetisov, S. Kh. Estemirova, and V. B. Fetisov, Neorg. Mater., 42, No. 11, 1360–1368 (2006).

    Article  Google Scholar 

  16. G. C. Allen, S. J. Harris, J. A. Jutson, and J. M. Dyke, Appl. Surf. Sci., 37, No. 1, 111–134 (1989).

    Article  ADS  Google Scholar 

  17. B. J. Tan, K. J. Klabunde, and P. M. A. Sherwood, J. Am. Chem. Soc., 113, No. 3, 855–861 (1991).

    Article  Google Scholar 

  18. G. K. Boreskov, Catalysis: Science and Technology, Berlin etc. 3, 39–137 (1982).

    Google Scholar 

  19. C. D. Wagner, N. M. Riggs, L. E. Davis, and J. J. Moulder, in: Handbook of X-ray Photoelectron Spectroscopy, G. E. Mullenberg, ed., Perkin-Elmer, Minnesota (1979), p. 42.

    Google Scholar 

  20. C. D. Wagner, D. A. Zatko, and R. H. Raymond, Anal. Chem., 52, No. 9, 1445–1451 (1980).

    Article  Google Scholar 

  21. V. I. Nefedov, D. Gati, B. F. Dzhurinskii, N. P. Sergushin, and Ya. V. Salyn’, Zh. Neorg. Khim., 20, No. 9, 2307–2314 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fetisov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 78, No. 2, pp. 261–266, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetisov, A.V., Kozhina, G.A., Fetisov, V.B. et al. Chemical state of the surface of mechanically activated Mn m O n oxides. J Appl Spectrosc 78, 240–244 (2011). https://doi.org/10.1007/s10812-011-9453-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-011-9453-6

Keywords

Navigation