Skip to main content
Log in

Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work the products of the oxidation at BDD anode of chloride ions in aqueous solutions were identified during galvanostatic electrolyses performed in a filter-press reactor operating both in batch and continuous mode. A set of experiments were preformed in order to study the effect of operating conditions (current density, residence time, hydrodynamics and chloride concentration) on distribution and concentration of electrolysis by-products. As a comparison experiments were also performed using a commercial DSA anode. A simple mathematical model was formulated, and the model predictions agree with the experimental data in a wide range of experimental conditions. The results of this work showed that at low chloride concentrations electrolysis with BDD anode produce a mixture of powerful oxidant: low current density, high mass transfer conditions and low residence time were found as optimal conditions to maximize the concentration of oxidants and minimize the concentration of chlorates. The proposed reaction mechanism may also justify the controversial effect of chloride ions in wastewater treatments: the electrolysis carried out with BDD anodes and electrolyte containing chloride concentration higher 1 g/L could meet the target of the process only if the active chlorine is effective in oxidation of the pollutant that must be removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Aa :

Anode area (m2)

Ac :

Cathode area (m2)

V R :

Reactor volume (m3)

C i :

Concentration of the ith compound (mol m−3)

Q:

Inlet–outlet flow rate (continuous mode) (m3 s−1)

QR :

Recirculating flow rate (m3 s−1)

D i :

Diffusivity of the ith compound (m2 s−1)

F :

Faraday number (C mol−1)

i :

Anodic current density (mA cm−2)

i lim :

Limiting anodic current density (mA cm−2)

I :

Current intensity (mA)

k m :

Mass transfer coefficient (m s−1)

K d :

Specific reaction rate for oxidant decay (s−1)

κ:

Volume of liquid related to a mole of OH radical (m3 mol−1)

n i :

Number of moles of the ith specie

δ :

Diffusion layer thickness \( \delta = \frac{{D_{i} }}{{k_{m} }}\,\left( {\text{m}} \right) \)

τ :

Residence time \( \tau = \frac{{V_{r} }}{Q}\,\left( {\text{s}} \right) \)

ε :

Faradic yield in continuous mode experiments

η :

Faradic yield in batch mode experiments

References

  1. Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis C (2001) J Electrochem Soc 148:D60–D64

    Article  CAS  Google Scholar 

  2. Polcaro AM, Vacca A, Palmas S, Mascia M (2003) J Appl Electrochem 33(10):885–892

    Article  CAS  Google Scholar 

  3. Rychen P, Pupunat L, Haenni W, Santoli E (2003) New Diam Front Carbon Technol 13(2):109–117

    CAS  Google Scholar 

  4. Polcaro AM, Vacca A, Mascia M, Palmas S, Pompei R, Laconi S (2007) Electrochim Acta 52(7):2595–2602

    Article  CAS  Google Scholar 

  5. Alfaro MAQ, Ferro S, Martinez-Huitle CA, Vong YM (2006) J Braz Chem Soc 17(2):227–236

    Article  CAS  Google Scholar 

  6. Santana MHP, De FariaLA, Boodts JFC (2005) Electrochim Acta 50(10):2017–2027

    Article  CAS  Google Scholar 

  7. Serrano K, Michaud PA, Comninellis C, Savall A (2002) Electrochim Acta 48(4):431–436

    Article  CAS  Google Scholar 

  8. Canizares P, Larrondo F, Lobato J, Rodrigo MA, Saez C (2005) J Electrochem Soc 152(11):D191–D196

    Article  Google Scholar 

  9. Polcaro AM, Vacca A, Mascia M, Ferrara F (2008) J Appl Electrochem 38(7):979–984

    Article  CAS  Google Scholar 

  10. Hastie J, Bejan D, Teutli-Leon M, Bunce NJ (2006) Ind Eng Chem Res 45(14):4898–4904

    Article  CAS  Google Scholar 

  11. Cabeza A, Urtiaga AM, Ortiz I (2007) Ind Eng Chem Res 46(5):1439–1446

    Article  CAS  Google Scholar 

  12. Greef R, Peat R, Peter L M, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry Ellis Horwood, Chichester, p 113

  13. Walsh F (1993) A first course in electrochemical engineering. Electrosintesys, New York

    Google Scholar 

  14. Sweetin DL, Sullivan E, Gordon G (1996) Talanta 43(1):103–108

    Article  CAS  Google Scholar 

  15. Bergmann MEH, Rollin J (2007) Catal Today 124(3–4):198–203

    Article  CAS  Google Scholar 

  16. Fierro S, Nagel T, Baltruschat H, Comninellis C (2007) Electrochem Commun 9:1969–1974

    Article  CAS  Google Scholar 

  17. Ferro S, De Battisti A, Duo I, Ch Comninellis, Haenni W, Perret A (2000) J Electrochem Soc 147(7):2614–2619

    Article  CAS  Google Scholar 

  18. Gandini D, Michaud PA, Duo I, Mahe E, Haenni W, Perret A, Comninellis C (1999) New Diam Front Carbon Technol 9(5):303–316

    CAS  Google Scholar 

  19. Trasatti S (1994) In: Electrochemistry of novel materials. VCH Publishers, New York, p 238

  20. Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis C (2003) J Electrochem Soc 150:D79–D83

    Article  CAS  Google Scholar 

  21. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon press, Oxford, pp 590–603

    Google Scholar 

  22. Bergmann H, Iourtchouk T, Schops K, Bouzek K (2002) Chem Eng J 85:111–117

    Article  CAS  Google Scholar 

  23. Canizares P, Martinez L, Paz R, Saez C, Lobato J, Rodrigo MA (2006) J Chem Technol Biotechnol 81(8):352–358

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Polcaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polcaro, A.M., Vacca, A., Mascia, M. et al. Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides. J Appl Electrochem 39, 2083–2092 (2009). https://doi.org/10.1007/s10800-009-9870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9870-x

Keywords

Navigation