Skip to main content
Log in

Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO2 electrode

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work reports on the electrochemical oxidation of oxytetracycline hydrochloride (OTCH) [(4S,4aS,5aS,6S,12aS)-4-dimethylamino-1,4,4a,5, 5a,6,11,12a-octahydro-3,6,10,12,12a-hexahydroxy-6-methyl-1,11-dioxonaphthacene-2-carboxamide] on a RuO2 electrode (DSA®) by cyclic voltammetry and electrolysis. The electrocatalytic efficiency of the electrode material was investigated as a function of different aqueous buffer solutions with pH values of 2.10 and 5.45 as supporting electrolytes. Spectrophotometric studies have shown that OTCH is stable in such solutions. The electrochemical degradation of OTCH is pseudo-first order at both pH values investigated with rate constants, k, of 9.9 × 10−5 s−1 (pH 2.10) and 1.9 × 10−4 s−1 (pH 5.45) at 21 ± 1 °C. Microbiological studies with Staphylococcus aureus ATCC 29213 have shown that OTCH lost antibacterial activity after 120 min of electrolysis at 50 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kolpin DW, Skopec M, Meyer MT, Furlong ET, Zaugg SD (2004) Sci Total Environ 328:119

    Article  CAS  Google Scholar 

  2. Jara CC, Fino D, Specchia V, Saracco G, Spinelli P (2007) Appl Catal B 70:479

    Article  Google Scholar 

  3. Balcioğlu IA, Ötker M (2003) Chemosphere 50:85

    Article  Google Scholar 

  4. Bower CK, Daeschel MA (1999) Int J Food Microbiol 50:33

    Article  CAS  Google Scholar 

  5. Guardabassi L, Wong DMAL, Dalsgaard A (2002) Water Res 29:1955

    Article  Google Scholar 

  6. Guillemot D (1999) Curr Opin Microbiol 2:494

    Article  CAS  Google Scholar 

  7. Mulroy A (2001) Water Environ Technol 13:32

    CAS  Google Scholar 

  8. Rabolle M, Spliid NH (2000) Chemosphere 40:715

    Article  CAS  Google Scholar 

  9. Tzoc E, Arias ML, Valiente C (2004) Rev Bioméd 15:165

    Google Scholar 

  10. Miranda CD, Castillo G (1998) Sci Total Environ 224:167

    Article  CAS  Google Scholar 

  11. Stumpf M, Ternes TA, Wilken R, Rodrigues SV, Baumann W (1999) Sci Total Environ 225:135

    Article  Google Scholar 

  12. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Sci Total Environ 225:81

    Article  CAS  Google Scholar 

  13. Richardson ML, Brown JM (1985) Pharm Pharmacol 37:1

    CAS  Google Scholar 

  14. Küremer K, Al-Ahmad A, Mersch-Sundermann V (2000) Chemosphere 40:701

    Article  Google Scholar 

  15. Halling SB, Nors NS, Lankzky PF, Ingerslev F, Holten LHC, Jorgensen SE (1998) Chemosphere 36:357

    Article  Google Scholar 

  16. Takahashi N, Nakal T, Satoh Y, Katoh Y (1994) Water Res 28:1563

    Article  CAS  Google Scholar 

  17. Scott JP, Ollis D (1995) Environ Prog 14:88

    Article  CAS  Google Scholar 

  18. Alvares ABC, Diaper C, Parsons S (2001) Environ Technol 22:409

    Article  CAS  Google Scholar 

  19. Beer B (1996) Neth Pat Appl 216 (1957): 199, US Pat 3,236,756

  20. De Nora O, Nidloa A, Trisoglio G, Bianchi G (1973) Br Pat 1 339:576

    Google Scholar 

  21. Calza P, Medana C, Pazzi M, Baiocchi C, Pelizzetti E (2004) Appl Catal B 53:63

    Article  CAS  Google Scholar 

  22. Turiel E, Bordin G, Rodriguez AR (2005) J Environ Monit 7:189

    Article  CAS  Google Scholar 

  23. González O, Sans C, Esplugas S (2007) J Hazard Mater 146:459

    Article  Google Scholar 

  24. Wang X, Hu JM, Hsing IM (2004) J Electroanal Chem 562:73

    Article  CAS  Google Scholar 

  25. Shieh DT, Hwang BJ (1995) J Electrochem Soc 142:816

    Article  CAS  Google Scholar 

  26. Garavaglia R, Mari CM, Trasatti S (1984) Surf Technol 23:41

    Article  CAS  Google Scholar 

  27. Rossi A, Boodts JFC (2002) J Appl Electrochem 35:735

    Article  Google Scholar 

  28. Schimitt MO, Schneider S (2000) Phys Chem Comm 3:42

    Google Scholar 

  29. McCormick J, Jensen E, Miller R, Doerschuk A (1960) J Am Chem Soc 82:3381

    Article  CAS  Google Scholar 

  30. Yuen MF, Lauks I, Dautremont-Smith WC (1983) Solid State Ionics 11:19

    Article  CAS  Google Scholar 

  31. Burke LD, Whelan DP (1981) J Electroanal Chem 124:333

    Article  CAS  Google Scholar 

  32. Comninellis Ch, De Battisti A (1996) J Chim Phys 93:673

    CAS  Google Scholar 

  33. Fóti G, Gandini D, Comninellis Ch, Perret A, Haenni W (1999) Electrochem Solid-State Lett 2:228

    Article  Google Scholar 

  34. Hu JM, Zhang JQ, Meng HM, Zhang JT, Cao CN (2005) Electrochim Acta 50:5370

    Article  CAS  Google Scholar 

  35. Andrade AR, Donate PM, Alves PPD, Fidellis CHV (1998) J Electrochem Soc 145:3839

    Article  Google Scholar 

  36. Doubova LM, De Battisti A, Daolio S, Pagura C, Barison S, Gerbasi R, Battiston G, Guerriero P, Trasatti S (2004) Russian J Electrochem 40:1115

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner RL (1980) Electrochemical methods: fundamental and applications. Wiley, New York

    Google Scholar 

  38. Santos MC, Cogo LC, Tanimoto ST, Calegaro ML, Bulhões LOS (2006) Appl Surf Science 253:1817

    Article  CAS  Google Scholar 

  39. Malpass GRP, Miwa DW, Machado SAS, Olivi P, Motheo AJ (2006) J Hazard Mater 137:565

    Article  CAS  Google Scholar 

  40. Mousty C, Foti G, Comninellis Ch, Reid V (1999) Electrochim Acta 45:451

    Article  CAS  Google Scholar 

  41. Simond O, Schaller V, Comninellis Ch (1997) Electrochim Acta 42:2009

    Article  CAS  Google Scholar 

  42. Foti G, Gandini D, Comninellis Ch, Perret A, Haenni W (1999) Electrochem Solid-State Lett 2:228

    Article  CAS  Google Scholar 

  43. Fóti G, Gandini G, Comninellis Ch (1997) Curr Top Electrochem 5:71

    Google Scholar 

  44. Costa FIM, Lima PL, Machado SAS, Avaca LA (1998) Electrochim Acta 44:1515

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Fundação de Amparo à Pesquisa do Estado de Minas Gerais, FAPEMIG (Process EDT 359/05), Universidade Federal dos Vales do Jequitinhonha e Mucuri / UFVJM, Brazil, and TiBrasil Titânio Ltda by donation of the Ti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, A., Alves, V.A., Da Silva, L.A. et al. Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO2 electrode. J Appl Electrochem 39, 329–337 (2009). https://doi.org/10.1007/s10800-008-9676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9676-2

Keywords

Navigation