Skip to main content
Log in

Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

MnOx/C-based electrocatalysts, prepared by the chemical deposition of manganese oxide nanoparticles on carbon, were tested towards the Oxygen Reduction Reaction (ORR) in their as-synthesized state and after ageing, either in ambient air for a year (mild ageing) or in an O2-saturated molar KOH solution at 80 °C for three weeks (premature ageing). For each electrocatalyst, the morphology and composition were characterised using TEM, XRD and chemical analysis. ORR kinetic parameters were evaluated using the Rotating Disk Electrode (RDE) and Rotating Ring Disk Electrode (RRDE) setups. Whilst the oxygen reduction activity of the electrocatalysts barely changes after mild ageing, it decreases after premature ageing following dramatic modifications to both the chemical and crystalline structures of the carbon-supported MnOx nanoparticles. The peroxide yield also sharply increases after premature ageing. Doping MnOx/C with nickel or magnesium divalent cations is beneficial since it improves both the catalytic activity and selectivity towards the 4-electron ORR pathway, even after ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kinoshita K (1992) In: Wiley (ed) Electrochemical oxygen technology. New York

  2. Lamminen J, Kivisaari J, Lampinen MJ, Viitanen M, Vuorisalo J (1991) J Electrochem Soc 138:905

    Article  CAS  Google Scholar 

  3. Chang CC, Wen TC (1997) Mater Chem Phys 47:203

    Article  Google Scholar 

  4. Geniès L (1999) Thèse de doctorat. INPG

  5. Illiev I, Mrha J, Kaisheva A, Gamburzev S (1976) J Power Sources 1:35

    Article  Google Scholar 

  6. Furuya N, Ichinose O, Uchimura A (1997) ISE meeting, Paris, abstract 611

  7. Zoval JV, Stiger RM, Biernacki PR, Penner RM (1996) J Phys Chem 100:837

    Article  Google Scholar 

  8. Zoval JV, Biernacki PR, Penner RM (1996) Anal Chem 68:1585

    Article  Google Scholar 

  9. Chatenet M, Geniès-Bultel L, Aurousseau M, Durand R, Andolfatto F (2002) J Appl Electrochem 32:1131

    Article  Google Scholar 

  10. Zoltowski P, Drazic DM, Vorkapic L (1973) J Appl Electrochem 3:271

    Article  CAS  Google Scholar 

  11. Vondrák J, Sedlaříková M, Novák V (1998) J New Mater Electrochem Syst 1:25

    Google Scholar 

  12. Bezdička P, Grygar T, Klápště B, Vondrák J (1999) Electrochim Acta 45:913

    Article  Google Scholar 

  13. Klápště B, Vondrák J, Velická J (2002) Electrochim Acta 47:2365

    Article  Google Scholar 

  14. Vondrák J, Klápště B, Velická J, Sedlaříková M, Černý R (2003) J Solid State Electrochem 8:44

    Article  Google Scholar 

  15. Vondrák J, Klápště B, Velická J, Sedlaříková M, Novák V, Reiter J (2005) J New Mater Electrochem Syst 8:1

    Google Scholar 

  16. Vondrák J, Klápště B, Velická J, Sedlaříková M, Reiter J, Roche I, Chainet E, Fauvarque JF, Chatenet M (2005) J New Mater Electrochem Syst 8:209

    Google Scholar 

  17. Ticianelli EA, Lima F, Calegaro M (2006) 209th ECS spring meeting, Denver, abstract 301

  18. Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Electrochim Acta 48:1015

    Article  Google Scholar 

  19. Roche I, Chainet E, Chatenet M, Vondrák J (2007) J Phys Chem C 111:1434

    Article  Google Scholar 

  20. Chatenet M, Aurousseau M, Durand R, Andolfatto F (2003) J Electrochem Soc 150:D47

    Article  Google Scholar 

  21. Pourbaix M (1963) In: Gauthier-Villard (ed) Atlas d’équilibres électrochimiques. Paris

  22. Sauvage F, Baudrin E, Tarascon JM (2007) Sens Actuators B 120:638

    Article  Google Scholar 

  23. Kanungo SB (1979) J Catal 58:419

    Article  CAS  Google Scholar 

  24. Anderson TN (1996) In: Bockris JOM et al. (eds) Modern aspects of electrochemistry, vol 30, Chapter 4. Plenum Press, New York

  25. Chatenet M (2000) Thèse de doctorat. INPG

  26. Kinoshita K, Bett J (1973) Carbon 11:237

    Article  CAS  Google Scholar 

  27. Stevens DA, Dahn JR (2005) Carbon 43:179

    Article  Google Scholar 

  28. Akira T, Taniguchi A, Maekawa J, Siroma Z, Tanaka K, Kohyama M, Yasuda K (2006) J Power Sources 159:461

    Article  Google Scholar 

  29. Ferreira PJ, O’ GJL, Shai-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) J Electrochem Soc 152:A2256

    Article  Google Scholar 

  30. Albery WJ, Hitchman ML (1971) In: Ring-disk electrodes. Oxford University Press, Oxford, pp 17–28

  31. Geniès L, Faure R, Durand R (1998) Electrochim Acta 44:1317

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Grant Agency of the Czech Republic (project N° 104/02/0731), by the Grant Agency of Academy of Sciences (N° 403/002 and KJB 481 3302) and by the Ministry of Education of the Czech Republic (Project N° MSM 262200010). It was also supported by the Ministry of Education and Research of France (Project N° PF 2002 88 2) and by the CNRS (Project N° 18105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Roche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roche, I., Chaînet, E., Chatenet, M. et al. Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium. J Appl Electrochem 38, 1195–1201 (2008). https://doi.org/10.1007/s10800-008-9537-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9537-z

Keywords

Navigation