Skip to main content
Log in

Role of Mo6+ during nickel electrodeposition from sulfate solutions

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of Mo6+ on the current efficiency, deposit quality, surface morphology, crystallographic orientations and polarisation behaviour of the cathode during electrodeposition of nickel from sulfate solutions was investigated. Mo6+ did not have a significant effect on current efficiency over the concentration range 2–100 mg dm−3. However; a decrease in current efficiency by a magnitude of more than 20% was seen at 500 mg dm−3. The quality of the nickel deposit with reference to the visual appearance and contamination level varied with varying concentration of Mo6+; this was also reflected in the morphology and crystallographic orientations of the deposits. Addition of Mo6+ to the electrolyte introduced two new crystal planes i.e., (220) and (311). Depolarisation of the cathode was noted at lower concentrations of Mo6+ (2–40 mg dm−3) whereas polarisation of the cathode was observed at Mo6+ concentration >40 mg dm−3 .The effect of Mo6+ on parameters such as Tafel slope (b), transfer coefficient (α) and exchange current density (i 0) were also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Essin O, Alfimova E (1935) Trans Electrochem Soc 68:417

    Google Scholar 

  2. Yuza V, Kopyl I (1940) J Phys Chem 14:1071

    Google Scholar 

  3. Salt F (1947) Disc Faraday Soc 1:169

    Google Scholar 

  4. Gorbachev A, Yurkevich Y (1954) J Chem Phys 28:1120

    CAS  Google Scholar 

  5. Fischer H, Seipt M, Morolock G (1955) Z Elektrochem 59:440

    CAS  Google Scholar 

  6. Yang L (1950) J Electrochem Soc 97:241

    Article  CAS  Google Scholar 

  7. Clark G, Simonson S (1951) J Electrochem Soc 98:110

    Article  CAS  Google Scholar 

  8. Wyllie MRF (1948) J Chem Phys 16:52

    Article  CAS  Google Scholar 

  9. Evans DJ (1958) Trans Faraday Soc 59:1086

    Article  Google Scholar 

  10. Cliffe DR, Farr JPG (1964) J Electrochem Soc 111:299

    Article  CAS  Google Scholar 

  11. Epelboin J, Froment M, Maurin G (1969) Plating 56:1556

    Google Scholar 

  12. Reddy AKN (1973) J Electroanal Chem 6:141, 153, 159

  13. Gogia SK, Das SC (1988) Met Trans B 19:6

    Article  Google Scholar 

  14. Gogia SK, Das SC (1991) J Appl Electrochem 21:64

    Article  CAS  Google Scholar 

  15. Holm M, Keefe TJO (2000) Met Trans B 31:1203

    Article  Google Scholar 

  16. Zhou Z, Holm M, Keefe TJO (1997) In: Proceedings Nickel-Cobalt 97, CIM, Sudbury, Canada

  17. Tripathy BC, Das SC, Singh P, Hefter GT, Muir DM (2001) J Appl Electrochem 31:573

    Article  CAS  Google Scholar 

  18. Mohanty US, Tripathy BC, Singh P, Das SC (2002) Minerals Eng 15:531

    Article  CAS  Google Scholar 

  19. Mohanty US, Tripathy BC, Singh P, Das SC (2002) J Electroanal Chem 526:63

    Article  CAS  Google Scholar 

  20. Mohanty US, Tripathy BC, Singh P, Das SC (2004) J Electroanal Chem 566:47

    Article  CAS  Google Scholar 

  21. Tripathy BC, Singh P, Muir DM (2001) Met Trans B 32:395

    Article  Google Scholar 

  22. Mohanty US, Tripathy BC, Singh P, Das SC (2001) J Appl Electrochem 31:579

    Article  CAS  Google Scholar 

  23. Mohanty US, Tripathy BC, Singh P, Das SC (2001) J Appl Electrochem 31:969

    Article  CAS  Google Scholar 

  24. Zeng Y, Yao SW, Guo HT (1994) Platinum Surf Fin (Chinese) 16:9

    Google Scholar 

  25. Zeng Y, Yao SW, Gao HT (1995) Platinum Surf Fin 82:640

    Google Scholar 

  26. Mark HF, Othermer DF, Overberger CG, Seaborg GS (1981) Kirk Othmer encyclopedia of chemical technology, vol. 15, 3rd edn. A Wiley Interscience Publication, p 670

  27. Swansou T (1953) Natl Bur Stand (U.S.) Circ 539(1):13

    Google Scholar 

  28. Ernst DW, Holt ML (1958) J Electrochem Soc 105:686

    Article  CAS  Google Scholar 

  29. Chassaing E, Quang KV, Wiart R (1989) J Appl Electrochem 19:839

    Article  CAS  Google Scholar 

  30. Zeng Y, Yao SW, Guo HT (1995) Act Phys Chem Sin (Chinese) 11:351

    CAS  Google Scholar 

  31. Zeng Y, Yao SW, Guo HT (1997) Chem J Chem 15:193

    CAS  Google Scholar 

  32. Souchay P (1963) Polyanions and polycations. Gauthier-Villars, Paris

    Google Scholar 

  33. Pope MT (1983) Heteropoly and isopoly oxometallates. Springer-Verlag, Berlin

    Google Scholar 

  34. Van Veen JAR, Sudemeiger O, Emeis CA, de Wit HJ (1986) J Chem Soc Dalton Trans 1825

  35. Peterson L, Anderson I, Ohman L (1986) Inorg Chem 25:4726

    Article  Google Scholar 

  36. Van Veen JAR, Hendris PAJM, Andra RR, Romers EJGM, Wilson AE (1990) J Phys Chem 94:5282

    Article  Google Scholar 

  37. Hoare JP (1986) J Electrochem Soc 133:2491

    Article  CAS  Google Scholar 

  38. Hoare JP (1987) J Electrochem Soc 134:3102

    Article  CAS  Google Scholar 

  39. Dorsch RK (1969) J Electroanal Chem 21:495

    Article  CAS  Google Scholar 

  40. Fleischmann M, Reintjes AS (1984) Electrochim Acta 29(1):69

    Article  CAS  Google Scholar 

  41. Horkans J (1979) J Electrochem Soc 126:1861

    Article  CAS  Google Scholar 

  42. Pushpavanam M, Balakrishnan K (1996) J Appl Electrochem 26:283

    CAS  Google Scholar 

  43. Fukushima H, Akiyama T, Nakakoji H, Higashi K (1979) Hyomen Gijutsu 30(11):600

    CAS  Google Scholar 

  44. Piatti RCV, Arvia AJ, Podesta JJ (1969) Electrochim Acta 14:541

    Article  CAS  Google Scholar 

  45. Hurlen T (1975) Electrochim Acta 20:499

    Article  CAS  Google Scholar 

  46. Farndon EE, Walsh FC, Campbell SA (1995) J Appl Electrochem 25:574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

USM would first like to thank the CSIR for granting him a research fellowship. The authors thank P. Fallon for assistance with SEM, K. Seymour for XRD and T. B. Issa for general assistance throughout the work. The authors also thank the Director, Regional Research Laboratory Bhubaneswar for his kind permission to publish this paper. Financial support was partly received from the A. J. Parker Cooperative Research Centre for Hydrometallurgy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, U.S., Tripathy, B.C., Singh, P. et al. Role of Mo6+ during nickel electrodeposition from sulfate solutions. J Appl Electrochem 38, 239–244 (2008). https://doi.org/10.1007/s10800-007-9431-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9431-0

Keywords

Navigation