Skip to main content

Advertisement

Log in

Mixed first and zero order kinetics in the electrooxidation of sulfamethoxazole at a boron-doped diamond (BDD) anode

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pharmaceutical residues in the aquatic environment represent an emerging environmental problem, because many pharmaceuticals are refractory towards conventional waste water treatment. This study focussed on the oxidation of the sulfonamide antibiotic sulfamethoxazole (SMX) at a boron-doped diamond anode, at which reactive hydroxyl radicals are formed. Electrochemical oxidation led to mineralization with high current efficiency, but without the formation of known toxic products of partial oxidation. A “mixed” kinetic order with respect to substrate concentration was observed; the kinetics could be shifted in the direction of either diffusion control (first order in SMX) or current control (zero order in SMX) by adjusting the substrate concentration and current density. Alternatively, the electrooxidation could be described by a model, applicable to a wide range of reaction conditions, in which the kinetic orders with respect to current and initial substrate concentration were approximately 0.4 and 0.5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Swain GM, Ramesham R (1993) Anal Chem 65:345

    Article  CAS  Google Scholar 

  2. Perret A, Haenni W, Niedermann P, Skinner N, Comninellis Ch, Gandini D (1998) Proc Electrochem Soc 97:275

    Google Scholar 

  3. Marselli B, Garcia-Gomez J, Michaud P-A, Rodrigo MA, Comninellis Ch (2003) J Electrochem Soc 150:D79

    Article  CAS  Google Scholar 

  4. Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis Ch (2001) J Electrochem Soc 148:D60

    Article  CAS  Google Scholar 

  5. Morao A, Lopez A, Pessou de Amorim M, Goncalves M (2004) Electrochim Acta 49:1587

    CAS  Google Scholar 

  6. Ammar S, Abdelhedi R, Flox C, Arias C, Brillas E (2006) Environ Chem Lett 4:229

    Article  CAS  Google Scholar 

  7. Both VM, Comninellis Ch (1999) Process/System Engineering 70:165

    Google Scholar 

  8. Da Pozzo A, Merli C, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2005) Environ Chem Lett 3:7

    Article  CAS  Google Scholar 

  9. Bonin PML, Bejan D, Radovic-Hrapovic Z, Halasz H, Hawari J, Bunce NJ (2005) Environ Chem 3:125

    Article  CAS  Google Scholar 

  10. Waterston K, Bejan D, Bunce NJ (2006) J Appl Electrochem 36:227

    Article  CAS  Google Scholar 

  11. Kolpin D, Furlong E, Meyer M, Thurman E, Zaugg S, Barber L, Buxton H (2002) Environ Sci Technol 36:1202

    Article  CAS  Google Scholar 

  12. Ternes T (2001) ACS Symp Ser 791:39

    CAS  Google Scholar 

  13. Heberer T (2002) Toxicol Lett 131:5

    Article  CAS  Google Scholar 

  14. Carballa M, Omil F, Lema JM, Llompart M, Garcia-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Water Res 38:2918

    Article  CAS  Google Scholar 

  15. Miao X-S, Bishay F, Chen M, Metcalfe CD (2004) Environ Sci Technol 38:3533

    Article  CAS  Google Scholar 

  16. Hirsch R, Ternes T, Haberer K, Kratz K-L (1999) Sci Total Environ 225:109

    Article  CAS  Google Scholar 

  17. Sanderson H, Johnson D, Wilson C, Brain R, Solomon K (2003) Toxicol Lett 144:383

    Article  CAS  Google Scholar 

  18. Ternes T, Meisenheimer M, McDowell D, Sacher F, Brauch H, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Environ Sci Technol 36:3855

    Article  CAS  Google Scholar 

  19. Zuccato E, Calamari D, Natangelo P, Fanelli R (2000) Lancet 355:1789

    Article  CAS  Google Scholar 

  20. Kümmerer K (2001) Chemosphere 45:957

    Article  Google Scholar 

  21. Perez S, Eichhorn P, Aga DS (2005) Environ Toxicol Chem 24:1361

    Article  CAS  Google Scholar 

  22. Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) J Hazard Mater 122:259

    Article  CAS  Google Scholar 

  23. Huber MM, Canonica S, Park G-Y, von Gunten U (2003) Environ Sci Technol 37:1016

    Article  CAS  Google Scholar 

  24. Huber MM, Korhonen S, Ternes TA, von Gunten U (2005) Water Res 39:3607

    Article  CAS  Google Scholar 

  25. Huber MM, Goegel A, Joss A, Hermann N, Loeffler D, McArdell CS, Reid A, Siegrist H, Ternes TA, Von Gunten U (2005) Environ Sci Technol 39:4290

    Article  CAS  Google Scholar 

  26. Sharma VK, Mishra SK, Ray AK (2006) Chemosphere 62:128

    Article  CAS  Google Scholar 

  27. Jørgensen SE, Halling-Sørensen B (2000) Chemosphere 40:691

    Article  Google Scholar 

  28. Ingerslev F, Halling-Sørensen B (2000) Environ Toxicol Chem 19:2467

    Article  CAS  Google Scholar 

  29. Drewes JE, Shore LS (2001) ACS Symp Ser 791:206

    Article  CAS  Google Scholar 

  30. Webb S, Ternes T, Gibert M, Olejniczak K (2003) Toxicol Lett 142:157

    Article  CAS  Google Scholar 

  31. Schwab BW, Hayes EP, Fiori JM, Mastrocco FJ, Roden MN, Cragin D, Meyerhoff RD, D’Aco VJ, Anderson PD (2005) Regul Toxicol Pharmacol 42:296

    Article  CAS  Google Scholar 

  32. De Souza A, Baylocq D, Pellerin F (1988) Talanta 35:875

    Article  Google Scholar 

  33. Lovrek M, Zorc B, Butula I (1998) Acta Pharm (Zagreb) 48:31

    CAS  Google Scholar 

  34. Goyal RN, Srivastava RK (1990) Indian J Chem 29A:635

    CAS  Google Scholar 

  35. Husain S, Krishna Murty ASR, Prasad PR, Sekar R (1995) Indian Drugs 32:336

    CAS  Google Scholar 

  36. Cribb AE, Spielberg SP (1992) Clin Pharmacol Ther 51:522

    Article  CAS  Google Scholar 

  37. Lavergne SN, Volkman EM, Maki JE, Yoder AR, Trepanier LA (2005) Toxicology 208:63

    Article  CAS  Google Scholar 

  38. Lehmann DF, Liu A, Newman N, Blair DC (1999) J Clin Pharmacol 39:533

    CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, Chapter 3

    Google Scholar 

  40. Marusawa H, Ichikawa K, Narita N, Murakami H, Ito K, Tezuka T (2002) Bioorg Med Chem 10:2283

    Article  CAS  Google Scholar 

  41. Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry. Academic Press, San Diego, CA, Chapter 2

    Google Scholar 

  42. Waterston K, Wang JW, Bejan D, Bunce NJ (2007) J Appl Electrochem 37:367

    Article  CAS  Google Scholar 

  43. Le Naour C, Moisy P, Arpigny S, Madic C (1999) Electrochim Acta 44:3505

    Article  Google Scholar 

  44. Körbahteit BK, Salih B, Tanyolac A (2001) J Chem Technol Biotechnol 77:70

    Article  CAS  Google Scholar 

  45. Bejankiwar R, Lalman JA, Seth R, Biswas N (2005) Water Res 39:4715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support and Dr H. Lee for assistance with the bacterial assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel J. Bunce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Bejan, D., McDowell, M.S. et al. Mixed first and zero order kinetics in the electrooxidation of sulfamethoxazole at a boron-doped diamond (BDD) anode. J Appl Electrochem 38, 151–159 (2008). https://doi.org/10.1007/s10800-007-9413-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9413-2

Keywords

Navigation