Skip to main content

Advertisement

Log in

Tapping the potential of Solanum lycopersicum L. pertaining to salinity tolerance: perspectives and challenges

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Crop breeding for abiotic stress tolerance entails introgression of stress tolerant genes into the cultivated types. With the augmentation in salt tolerance, a comparatively high production can be achieved even when the plants are exposed to salinity stress. It will aid in addressing the demand–supply gap concerning high-quality food for the ever-growing global population. Tomato, a crop of high agro-economic significance is largely affected by salt stress. Various landraces and wild relatives of locally-adapted cultivars of tomato have revealed the potential to tolerate climate adversities under natural conditions without compromising their growth and yield. The present review highlights the advancement in the genomics assisted breeding involving the wild relatives of tomato for their utilization in exploiting the salt stress tolerance. Further, we have thrown some light uponthe potential of biotechnological tools such as allele mining, QTL mapping, and OMICS technology with emphasis on their role in identification of probable stress-perceptive genes and transcription factors in wild relatives of tomato. The coordinative function of genomics and transcriptomics as a potential tool to maximize and expedite the conservation of wild relatives of tomato is the need of the hour for achieving the crop improvement and long-term sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276

    PubMed  PubMed Central  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131(4):1748–1755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abiala MA, Abdelrahman M, Burritt DJ, Tran LSP (2018) Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad Dev 29(10):3812–3822

    Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Integr Plant Biol 51(12):1095–1103

    CAS  PubMed  Google Scholar 

  • Ahmad A, Niwa Y, Goto S, Kobayashi K, Shimizu M, Ito S, Usui Y, Nakayama T, Kobayashi H (2015a) Genome-wide screening of salt tolerant genes by activation-tagging using dedifferentiated calli of Arabidopsis and its application to finding gene for myo-inositol-1-P-synthase. PLoS ONE 10(5):e0115502

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi A, John R, Egamberdieva D, Gucel S (2015b) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Ahmed CB, Rouina BB, Sensoy S, Boukhris M, Abdallah FB (2009) Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environ Exp Bot 67(2):345–352

    Google Scholar 

  • Al-Abdallat A, Ali-Sheikh-Omar M, Alnemer L (2015) Overexpression of two ATNAC3-related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.). Plant Cell, Tissue Organ Cult (PCTOC) 120(3):989–1001

    CAS  Google Scholar 

  • Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27(12):2101–2115

    Google Scholar 

  • Albacete A, Martínez-Andújar C, Ghanem ME, Acosta M, Sánchez-Bravo J, Asins MJ, Cuartero J, Lutts S, Dodd IC, Pérez-Alfocea F (2009) Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant, Cell Environ 32(7):928–938

    CAS  Google Scholar 

  • Albaladejo I, Meco V, Plasencia F, Flores FB, Bolarin MC, Egea I (2017) Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: from leaf anatomical adaptations to molecular responses. Environ Exp Bot 135:1–12

    CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell Environ 24(12):1337–1344

    CAS  Google Scholar 

  • Almeida P, de Boer G-J, de Boer AH (2014) Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1; 2. J Plant Physiol 171(6):438–447

    CAS  PubMed  Google Scholar 

  • Anita S, Major S, Singh B (2010) Comparative in vitro shoot organogenesis and plantlet regeneration in tomato genotypes. Indian J Hortic 67(1):37–42

    Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258

    CAS  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13(2):146–150

    CAS  PubMed  Google Scholar 

  • Arora A, Sairam R, Srivastava G (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82(10):1227–1238

  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. Vitro Cell Dev Biol Plant 44(5):373–383

    CAS  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol Adv 27(6):744–752

    CAS  PubMed  Google Scholar 

  • Asins M, Bolarín M, Pérez-Alfocea F, Estañ M, Martínez-Andújar C, Albacete A, Villalta I, Bernet G, Dodd IC, Carbonell E (2010) Genetic analysis of physiological components of salt tolerance conferred by Solanum rootstocks. What is the rootstock doing for the scion? Theor Appl Genet 121(1):105–115

    CAS  PubMed  Google Scholar 

  • Asins M, Breto M, Cambra M, Carbonell E (1993) Salt tolerance in Lycopersicon species. I. Character definition and changes in gene expression. Theor Appl Genet 86(6):737–743

    CAS  PubMed  Google Scholar 

  • Bhaskaran S, Savithramma D (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62(15):5561–5570

    CAS  PubMed  Google Scholar 

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni A, Bouzayen M, Zouine M (2018) Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE 13(2):e0193517

    PubMed  PubMed Central  Google Scholar 

  • Breto M, Aśins M, Carbonell E (1994) Salt tolerance in Lycopersicon species. III. Detection of quantitative trait loci by means of molecular markers. Theor Appl Genet 88(3–4):395–401

    CAS  PubMed  Google Scholar 

  • Cai X, Zhang C, Ye J, Hu T, Ye Z, Li H, Zhang Y (2015) Ectopic expression of FaGalUR leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Growth Regul 76(2):187–197

    CAS  Google Scholar 

  • Campos JF, Cara B, Pérez-Martín F, Pineda B, Egea I, Flores FB, Fernandez-Garcia N, Capel J, Moreno V, Angosto T (2016) The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. Plant Biotechnol J 14(6):1345–1356

    CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105(1–2):1–14

    Google Scholar 

  • Chaparzadeh N, D’Amico ML, Khavari-Nejad R-A, Izzo R, Navari-Izzo F (2004) Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem 42(9):695–701

    CAS  PubMed  Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22(1):27–34

    CAS  Google Scholar 

  • Chetelat RT, Pertuzé RA, Faúndez L, Graham EB, Jones CM (2009) Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica 167(1):77–93

    Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    CAS  Google Scholar 

  • Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant cell Rep 30(5):867–877

    CAS  PubMed  Google Scholar 

  • Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R (2007) The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem 282(12):9260–9268

    CAS  PubMed  Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169(1):75–82

    CAS  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156–165

    PubMed  PubMed Central  Google Scholar 

  • Cuartero J, Romero-Aranda R, Yeo A, Flowers T (2002) Variability for some physiological characters affecting salt tolerance in tomato. Acta Hortic 573:435–442

    Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56(1):87–94

    Google Scholar 

  • Dehan K, Tal M (1978) Salt tolerance in the wild relatives of the cultivated tomato: responses of Solanum pennellii to high salinity. Irrig Sci 1(1):71–76

    Google Scholar 

  • El-Hendawy S, Ruan Y, Hu Y, Schmidhalter U (2009) A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. J Agron Crop Sci 195(5):356–367

    CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264

    CAS  PubMed  Google Scholar 

  • Eyidogan F, Öz MT (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29(5):485

    CAS  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2017) Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol Environ Saf 137:64–70

    CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita DBSMA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, pp 153–188. https://doi.org/10.1007/978-90-481-2666-8

  • Fischer I, Steige KA, Stephan W, Mboup M (2013) Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato. PLoS ONE 8(10):e78182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers T (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    CAS  PubMed  Google Scholar 

  • Flowers T, Flowers S (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78(1–2):15–24

    Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foolad M (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42(4):727–734

    CAS  Google Scholar 

  • Foolad M, Chen F (1998) RAPD markers associated with salt tolerance in an interspecific cross of tomato (Lycopersicon esculentum× L. pennellii). Plant Cell Rep 17(4):306–312

    CAS  PubMed  Google Scholar 

  • Foolad M, Chen F (1999) RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato. Theor Appl Genet 99(1–2):235–243

    CAS  Google Scholar 

  • Foolad M, Chen F, Lin G (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97(7):1133–1144

    CAS  Google Scholar 

  • Foolad M, Jones R (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87(1–2):184–192

    CAS  PubMed  Google Scholar 

  • Foolad M, Stoltz T, Dervinis C, Rodriguez RL, Jones R (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3(4):269–277

    CAS  Google Scholar 

  • Foolad M, Zhang L, Lin G (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44(3):444–454

    CAS  PubMed  Google Scholar 

  • Foolad MR (2007a) Current status of breeding tomatoes for salt and drought tolerance. In: Jenks MA, Hasegawa PM, Mohan Jain S (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 669–700. https://doi.org/10.1007/978-1-4020-5578-2

  • Foolad MR (2007b) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007:64358. https://doi.org/10.1155/2007/64358

  • Foolad MR, Subbiah P, Zhang L (2007) Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions. Int J Plant Genomics 2007:97386. https://doi.org/10.1155/2007/97386

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frary A, Göl D, Keleş D, Ökmen B, Pınar H, Şığva HÖ, Yemenicioğlu A, Doğanlar S (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10(1):58

    PubMed  PubMed Central  Google Scholar 

  • Frary A, Keleş D, Pinar H, Göl D, Doğanlar S (2011) NaCl tolerance in Lycopersicon pennellii introgression lines: QTL related to physiological responses. Biol Plant 55(3):461–468

    CAS  Google Scholar 

  • Gálvez FJ, Baghour M, Hao G, Cagnac O, Rodríguez-Rosales MP, Venema K (2012) Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiol Biochem 51:109–115

    PubMed  Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54(9):374–381

    CAS  Google Scholar 

  • Gapińska M, Skłodowska M, Gabara B (2008) Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30(1):11

    Google Scholar 

  • García-Abellan JO, Egea I, Pineda B, Sanchez-Bel P, Belver A, Garcia-Sogo B, Flores FB, Atares A, Moreno V, Bolarin MC (2014) Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term. Physiol Plant 152(4):700–713

    PubMed  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gharbi E, Martínez J-P, Benahmed H, Lepoint G, Vanpee B, Quinet M, Lutts S (2017) Inhibition of ethylene synthesis reduces salt-tolerance in tomato wild relative species Solanum chilense. J Plant Physiol 210:24–37

    CAS  PubMed  Google Scholar 

  • Gharbi E, Martínez JP, Benahmed H, Fauconnier ML, Lutts S, Quinet M (2016) Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress. Physiol Plant 158(2):152–167

    CAS  PubMed  Google Scholar 

  • Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8:1–21. https://doi.org/10.1093/aobpla/plw055

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  PubMed  Google Scholar 

  • Gisbert C, Rus AM, Bolarín MC, López-Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123(1):393–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goel D, Singh A, Yadav V, Babbar S, Bansal K (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245(1–4):133–141

    CAS  PubMed  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168(11):1286–1294

    CAS  PubMed  Google Scholar 

  • Gomez J, Jimenez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55(394):119–130

    CAS  PubMed  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas M (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34(3):706–714

    CAS  Google Scholar 

  • Goyal E, Amit SK, Singh RS, Mahato AK, Chand S, Kanika K (2016) Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local. Sci Rep 6:27752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiol Biochem 39(1):11–17

    CAS  Google Scholar 

  • Guo Y, Huang C, Xie Y, Song F, Zhou X (2010) A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta 232(6):1499–1509

    CAS  PubMed  Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68(6):533

    CAS  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156(1–2):1–13

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    CAS  Google Scholar 

  • Hayashi H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16(2):155–161

    PubMed  Google Scholar 

  • He Z, Huang Z (2013) Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress. J Microbiol 51(1):100–104

    CAS  PubMed  Google Scholar 

  • Hernandez J, Jimenez A, Mullineaux P, Sevilia F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell Environ 23(8):853–862

    CAS  Google Scholar 

  • Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2009) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61(2):521–535

    PubMed  PubMed Central  Google Scholar 

  • Heuer B, Nadler A (1995) Growth and development of potatoes under salinity and water deficit. Aust J Agric Res 46(7):1477–1486

    Google Scholar 

  • Hichri I, Muhovski Y, Clippe A, Žižková E, Dobrev PI, Motyka V, Lutts S (2016) SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and A rabidopsis. Plant, Cell Environ 39(1):62–79

    CAS  Google Scholar 

  • Hichri I, Muhovski Y, Žižková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, Lopez-Vidriero I, Solano R, Clippe A, Errachid A (2017) The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Front Plant Sci 8:1343

    PubMed  PubMed Central  Google Scholar 

  • Hill CB, Cassin A, Keeble-Gagnère G, Doblin MS, Bacic A, Roessner U (2016) De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure. Sci Rep 6:31558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS ONE 9(3):e92598

    PubMed  PubMed Central  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122(4):1129–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27(2):129–138

    CAS  PubMed  Google Scholar 

  • Hsieh T-H, Lee J-T, Yang P-T, Chiu L-H, Charng Y-y, Wang Y-C, Chan M-T (2002) Heterology expression of the ArabidopsisC-repeat/dehydration response element binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129(3):1086–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh T-H, Li C-W, Su R-C, Cheng C-P, Tsai Y-C, Chan M-T (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231(6):1459–1473

    CAS  PubMed  Google Scholar 

  • Hu DG, Ma QJ, Sun CH, Sun MH, You CX, Hao YJ (2016) Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiol Plant 156(2):201–214

    CAS  PubMed  Google Scholar 

  • Huang X-Y, Chao D-Y, Gao J-P, Zhu M-Z, Shi M, Lin H-X (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Zhang Z, Zhang X, Zhang H, Huang D, Huang R (2004) Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett 573(1–3):110–116

    CAS  PubMed  Google Scholar 

  • Huertas R, Rubio L, Cagnac O, García-Sánchez MJ, Alché JDD, Venema K, Fernández JA, Rodríguez-Rosales MP (2013) The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant, Cell Environ 36(12):2135–2149

    CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Panneerselvam R (2008) Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. CR Biol 331(4):272–277

    Google Scholar 

  • Jia G-X, Zhu Z-Q, Chang F-Q, Li Y-X (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21(2):141–146

    CAS  Google Scholar 

  • John R, Pandey R, Sopory S, Rajam M (2010) Engineering antioxidant enzymes for abiotic stress tolerance in plants. J Plant Biols 37:1–18

    Google Scholar 

  • Kage H, Kochler M, Stützel H (2004) Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron 20(4):379–394

    Google Scholar 

  • Kalamaki MS, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I, Aggelis A, Carrillo-López A, Rubio-Cabetas MJ, Kanellis AK (2009) Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J Exp Bot 60(6):1859–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karkute SG, Gujjar RS, Rai A, Akhtar M, Singh M, Singh B (2018) Genome wide expression analysis of WRKY genes in tomato (Solanum lycopersicum) under drought stress. Plant Gene 13:8–17

    CAS  Google Scholar 

  • Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B (2017) CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci 8:1635

    PubMed  PubMed Central  Google Scholar 

  • Kashyap S, Kumari N, Mishra P, Moharana DP, Aamir M, Singh B, Prasanna H (2020) Transcriptional regulation-mediating ROS homeostasis and physio-biochemical changes in wild tomato (Solanum chilense) and cultivated tomato (Solanum lycopersicum) under high salinity. Saudi J Biol Sci 27(8):1999–2009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap S, Prasanna H, Kumari N, Mishra P, Singh B (2020) Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Sci Rep 10(1):1–20

    Google Scholar 

  • Katz A, Tal M (1980) Salt tolerance in the wild relatives of the cultivated tomato: proline accumulation in callus tissue of Lycopersicon esculentum and L. peruvianum. Z Pflanzenphysiol 98(5):429–435

    CAS  Google Scholar 

  • Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell, Tissue Organ Cult (PCTOC) 103(2):267–277

    CAS  Google Scholar 

  • Kim ST, Kim SG, Agrawal GK, Kikuchi S, Rakwal R (2014) Rice proteomics: a model system for crop improvement and food security. Proteomics 14(4–5):593–610

    CAS  PubMed  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF. B. 3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J2014:167681. https://doi.org/10.1155/2014/167681

  • Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16(2):263–276

    CAS  PubMed  Google Scholar 

  • Kukreja S, Nandwal A, Kumar N, Sharma S, Unvi V, Sharma P (2005) Plant water status, H 2 O 2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49(2):305–308

    CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7(3):323–328

    CAS  PubMed  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158(6):737–745

    CAS  Google Scholar 

  • Lee JT, Prasad V, Yang PT, Wu JF, David Ho TH, Charng YY, Chan MT (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant, Cell Environ 26(7):1181–1190

    CAS  Google Scholar 

  • Lei P, Xu Z, Liang J, Luo X, Zhang Y, Feng X, Xu H (2016) Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L. Plant Growth Regul 78(2):233–241

    CAS  Google Scholar 

  • Leidi EO, Barragán V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61(3):495–506

    CAS  PubMed  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4(10):766–770

    CAS  PubMed  Google Scholar 

  • Li D, Ma N-N, Wang J-R, Yang D-Y, Zhao S-J, Meng Q-W (2013) Overexpression of tomato enhancer of SOS3-1 (LeENH1) in tobacco enhanced salinity tolerance by excluding Na+ from the cytosol. Plant Physiol Biochem 70:150–158

    CAS  PubMed  Google Scholar 

  • Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, Han H, Wang L, Peng R, Yao Q (2018) A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Plant Physiol Biochem

  • Lim MY, Pulla RK, Park JM, Harn CH, Jeong BR (2012) Over-expression of l-gulono-γ-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced abiotic stress tolerance in tomato. Vitro Cel Dev Biol-Plant 48(5):453–461

    CAS  Google Scholar 

  • Lin G, Foolad M, Zhang L (2002) QTL comparison of salt tolerance during seed germination and vegetative stage in a Lycopersicon esculentum x L. pimpinellifolium RIL population. In: XXVI international horticultural congress: environmental stress and horticulture crops 618, pp 59–67

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84(1–2):19–36

    CAS  PubMed  Google Scholar 

  • Liu H, Liu J, Zhao M-M, Chen J-S (2015) Overexpression of ShCHL P in tomato improves seedling growth and increases tolerance to salt, osmotic, and oxidative stresses. Plant Growth Regul 77(2):211–221

    CAS  Google Scholar 

  • Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211

    CAS  PubMed  Google Scholar 

  • Lu C, Shao Y, Li L, Chen A, Xu W, Wu K, Luo Y, Zhu B (2011) Overexpression of SlERF1 tomato gene encoding an ERF-type transcription activator enhances salt tolerance. Russ J Plant Physiol 58(1):118–125

    CAS  Google Scholar 

  • Lu C, Zhang B, Kakihara F, Kato M (2001) Introgression of genes into cultivated Brassica napus through resynthesis of B. napus via ovule culture and the accompanying change in fatty acid composition. Plant Breed 120(5):405–410

    CAS  Google Scholar 

  • Lu Q-H, Wang Y-Q, Song J-N, Yang H-B (2018) Transcriptomic identification of salt-related genes and de novo assembly in common buckwheat (F. esculentum). Plant Physiol Biochem 127:299–309

    CAS  PubMed  Google Scholar 

  • Luo Y, Reid R, Freese D, Li C, Watkins J, Shi H, Zhang H, Loraine A, Song B-H (2017) Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Sci Rep 7(1):9624

    PubMed  PubMed Central  Google Scholar 

  • Lv X, Jin Y, Wang Y (2018) De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Comput Biol Chem 75:1–10

    CAS  PubMed  Google Scholar 

  • Lyu JI, Min SR, Lee JH, Lim YH, Kim J-K, Bae C-H, Liu JR (2013) Overexpression of a trehalose-6-phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato. Plant Cell, Tissue Organ Cult (PCTOC) 112(2):257–262

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    CAS  PubMed  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids Surf B: Biointerfaces 57(1):69–74

    CAS  PubMed  Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R (2008) Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. CR Biol 331(6):418–425

    CAS  Google Scholar 

  • Martinez J-P, Antunez A, Pertuze R, Acosta MDP, Palma X, Fuentes L, Ayala A, Araya H, Lutts S (2012) Effects of saline water on water status, yield and fruit quality of wild (Solanum chilense) and domesticated (Solanum lycopersicum var. cerasiforme) tomatoes. Exp Agric 48(4):573–586

    Google Scholar 

  • Martínez JP, Antúnez A, Araya H, Pertuzé R, Fuentes L, Lizana XC, Lutts S (2014) Salt stress differently affects growth, water status and antioxidant enzyme activities in Solanum lycopersicum and its wild relative Solanum chilense. Aust J Bot 62(5):359–368

    Google Scholar 

  • Miller J, Tanksley S (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80(4):437–448

    CAS  PubMed  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55(399):1105–1113

    CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115(3):393–400

    CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell Environ 26(6):845–856

    CAS  Google Scholar 

  • Mittova V, Theodoulou F, Kiddle G, Volokita M, Tal M, Foyer C, Guy M (2004) Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii: a role for matrix isoforms in protection against oxidative damage. Plant, Cell Environ 27(2):237–250

    CAS  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gómez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554(3):417–421

    CAS  PubMed  Google Scholar 

  • Mittova V, Volokita M, Guy M, Tal M (2000) Activities of SOD and the ascorbate–glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 110(1):42–51

    CAS  Google Scholar 

  • Mo Y, Yang R, Liu L, Gu X, Yang X, Wang Y, Zhang X, Li H (2016) Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul 79(2):229–241

    CAS  Google Scholar 

  • Mohanty A, Sarma N, Tyagi AK (1999) Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transmission of the transgenes to R2 progeny. Plant Sci 147(2):127–137

    CAS  Google Scholar 

  • Moisander P, McClinton E, Paerl H (2002) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43(4):432–442

    CAS  PubMed  Google Scholar 

  • Møller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci 12(12):534–540

    PubMed  Google Scholar 

  • Monforte A, Asins M, Carbonell E (1996) Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor Appl Genet 93(5–6):765–772

    CAS  PubMed  Google Scholar 

  • Monforte A, Asins M, Carbonell E (1997) Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet 95(1–2):284–293

    CAS  Google Scholar 

  • Monforte A, Asins M, Carbonell E (1999) Salt tolerance in Lycopersicon spp. VII. Pleiotropic action of genes controlling earliness on fruit yield. Theor Appl Genet 98(3–4):593–601

    Google Scholar 

  • Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6(1):18

    PubMed  PubMed Central  Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AT, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. In: Progress in plant nutrition: plenary lectures of the XIV international plant nutrition colloquium. Springer, pp 93-105

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-Sogo B, Sanchez-Bel P, Flores FB, Atarés A, Angosto T, Pintor-Toro JA (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169(5):459–468

    PubMed  Google Scholar 

  • Murshed R, Lopez-Lauri F, Sallanon H (2014) Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiol Mol Biol Plants 20(1):15–29

    CAS  PubMed  Google Scholar 

  • Nahakpam S, Shah K (2011) Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul 63(1):23–35

    CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146(2):333–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (2004) Whole plant senescence. In: Noodén LD (ed) Plant cell death processes. Academic Press, pp 227–244. https://doi.org/10.1016/B978-012520915-1/50018-7

  • Olías R, Eljakaoui Z, Li J, De Morales PA, Marín-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell Environ 32(7):904–916

    Google Scholar 

  • Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant, Cell Environ 33(12):2191–2208

    CAS  Google Scholar 

  • Pan I-C, Li C-W, Su R-C, Cheng C-P, Lin C-S, Chan M-T (2010) Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato. Planta 232(5):1075–1086

    CAS  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31(2):349–360

    CAS  PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335(6192):721

    CAS  PubMed  Google Scholar 

  • Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Syst Bot 30(2):424–434

    Google Scholar 

  • Petropoulos S, Daferera D, Polissiou M, Passam H (2008) The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci Hortic 115(4):393–397

    CAS  Google Scholar 

  • Puniran-Hartley N, Hartley J, Shabala L, Shabala S (2014) Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. Plant Physiol Biochem 83:32–39

    CAS  PubMed  Google Scholar 

  • Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci 99(12):8436–8441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queirós F, Rodrigues JA, Almeida JM, Almeida DP, Fidalgo F (2011) Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line. Plant Physiol Biochem 49(12):1410–1419

    PubMed  Google Scholar 

  • Quintero FJ, Blatt MR, Pardo JM (2000) Functional conservation between yeast and plant endosomal Na+/H+ antiporters 1. FEBS Lett 471(2–3):224–228

    CAS  PubMed  Google Scholar 

  • Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim W-Y, Ali Z, Fujii H, Mendoza I, Yun D-J, Zhu J-K (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci 108(6):2611–2616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi MI, Abdin MZ, Ahmad J, Iqbal M (2013) Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.). Phytochemistry 95:215–223

    CAS  PubMed  Google Scholar 

  • Rai GK, Rai NP, Kumar S, Yadav A, Rathaur S, Singh M (2012) Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. Vitro Cell Dev Biol-Plant 48(5):565–578

    CAS  Google Scholar 

  • Rains D, Goyal S (2003) Strategies for managing crop production in saline environments: an overview. J Crop Prod 7(1–2):1–10

    Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell Environ 29(12):2143–2152

    CAS  Google Scholar 

  • Rao AV, Agarwal S (2000) Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr 19(5):563–569

    CAS  PubMed  Google Scholar 

  • Rao ES, Kadirvel P, Symonds RC, Ebert AW (2013) Relationship between survival and yield related traits in Solanum pimpinellifolium under salt stress. Euphytica 190(2):215–228

    Google Scholar 

  • Rick C, Chetelat R (1995) Utilization of related wild species for tomato improvement. In: I international symposium on solanacea for fresh market 412, pp 21–38

  • Rick CM (1958) The role of natural hybridization in the derivation of cultivated tomatoes of western South America. Econ Bot 12(4):346–367

    Google Scholar 

  • Rick CM (1960) Hybridization between Lycopersicon esculentum and Solanum pennellii: phylogenetic and cytogenetic significance. Proc Natl Acad Sci USA 46(1):78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rochange S, Wenzel C, McQueen-Mason S (2001) Impaired growth in transgenic plants over-expressing an expansin isoform. Plant Mol Biol 46(5):581–589

    CAS  PubMed  Google Scholar 

  • Romero-Aranda R, Yeo A, Flowers T, Cuartero J (2000) Variability for some physiological characters affecting salt tolerance in tomato. In: International symposium on techniques to control salination for horticultural productivity 573, pp 435–441

  • Ronga D, Zaccardelli M, Lovelli S, Perrone D, Francia E, Milc J, Ulrici A, Pecchioni N (2017) Biomass production and dry matter partitioning of processing tomato under organic vs conventional cropping systems in a Mediterranean environment. Sci Hortic 224:163–170

    Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27(8):1395

    CAS  PubMed  Google Scholar 

  • Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol 114(2):519–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152(1):245–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saglam A, Saruhan N, Terzi R, Kadioglu A (2011) The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress. Russ J Plant Physiol 58(1):60–68

    CAS  Google Scholar 

  • Sairam R, Srivastava G, Agarwal S, Meena R (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49(1):85

    CAS  Google Scholar 

  • Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamazaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 52(2):283–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125(1):180–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar M, González E, Casaretto JA, Casacuberta JM, Ruiz-Lara S (2007) The promoter of the TLC1. 1. retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep 26(10):1861–1868

    CAS  PubMed  Google Scholar 

  • San Martín-Davison A, Pérez-Díaz R, Soto F, Madrid-Espinoza J, González-Villanueva E, Pizarro L, Norambuena L, Tapia J, Tajima H, Blumwald E (2017) Involvement of SchRabGDI1 from Solanum chilense in endocytic trafficking and tolerance to salt stress. Plant Sci 263:1–11

    Google Scholar 

  • Sánchez-Barrena MJ, Martínez-Ripoll M, Zhu J-K, Albert A (2005) The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345(5):1253–1264

    PubMed  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Romero L, Ruiz JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178(1):30–40

    Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2008) Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. under water-limited conditions. Colloids Surf B Biointerfaces 62(1):125–129

    CAS  PubMed  Google Scholar 

  • Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37(1):65–71

    CAS  Google Scholar 

  • Saranga Y, Zamir D, Marani A, Rudich J (1993) Breeding tomatoes for salt tolerance: variations in ion concentrations associated with response to salinity. J Am Soc Hortic Sci 118(3):405–408

    Google Scholar 

  • Sathee L, Sairam RK, Chinnusamy V, Jha SK (2015) Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiol Plant 37(8):169

    Google Scholar 

  • Seo YS, Choi JY, Kim SJ, Kim EY, Shin JS, Kim WT (2012) Constitutive expression of CaRma1H1, a hot pepper ER-localized RING E3 ubiquitin ligase, increases tolerance to drought and salt stresses in transgenic tomato plants. Plant Cell Rep 31(9):1659–1665

    CAS  PubMed  Google Scholar 

  • Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang M-H (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363(4):983–988

    CAS  PubMed  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112(4):487–494

    CAS  PubMed  Google Scholar 

  • Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 104(2):169–174

    CAS  Google Scholar 

  • Shankar R, Bhattacharjee A, Jain M (2016) Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 6:23719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao H-B, Chu L-Y, Jaleel CA, Zhao C-X (2008) Water-deficit stress-induced anatomical changes in higher plants. CR Biol 331(3):215–225

    Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162(8):854–864

    CAS  PubMed  Google Scholar 

  • Sharma R, Mishra M, Gupta B, Parsania C, Singla-Pareek SL, Pareek A (2015) De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PLoS ONE 10(5):e0126783

    PubMed  PubMed Central  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157(1):292–304

  • Sharp RE, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53(366):33–37

    CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14(2):465–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, Kamiya T, Gupta SK, Liu S, Takano T (2018) Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ Exp Bot 155:619–627

    CAS  Google Scholar 

  • Shukla N, Awasthi R, Rawat L, Kumar J (2012) Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88

    CAS  PubMed  Google Scholar 

  • Singh S, Rathore M, Goyary D, Singh RK, Anandhan S, Sharma DK, Ahmed Z (2011) Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep 30(6):1019–1028

    CAS  PubMed  Google Scholar 

  • Soshinkova T, Radyukina N, Korolkova D, Nosov A (2013) Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ J Plant Physiol 60(1):41–54

    CAS  Google Scholar 

  • Specht J, Chase K, Macrander M, Graef G, Chung J, Markwell J, Germann M, Orf J, Lark K (2001) Soybean response to water. Crop Sci 41(2):493–509

    CAS  Google Scholar 

  • Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X (2010) Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol 51(6):997–1006

    CAS  PubMed  Google Scholar 

  • Sun X, Xu L, Wang Y, Luo X, Zhu X, Kinuthia KB, Nie S, Feng H, Li C, Liu L (2016) Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Plant Cell Rep 35(2):329–346

    CAS  PubMed  Google Scholar 

  • Tahir MHN, Mehid S (2001) Evaluation of open pollinated sunflower (Helianthus annuus L.) populations under water stress and normal conditions. Int J Agric Biol 3:236–238

    Google Scholar 

  • Tal M, Del Rosario D (1990) Improvement of salt tolerance in tomato by conventional breeding and selection in cell culture. In: Proceedings of the XIth Eucarpia meeting on tomato genetics and breeding, pp 87–92

  • Tal M, Heikin H, Dehan K (1978) Salt tolerance in the wild relatives of the cultivated tomato: Responses of callus tissue of Lycopersicon esculentum, L. peruvianum and Solanum pennellii to high salinity. Z Pflanzenphysiol 86(3):231–240

    CAS  Google Scholar 

  • Tapia G, Méndez J, Inostroza L (2016) Different combinations of morpho-physiological traits are responsible for tolerance to drought in wild tomatoes Solanum chilense and Solanum peruvianum. Plant Biol 18(3):406–416

    CAS  PubMed  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259(5094):508–510

    CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Tian Y, Luo X, Zhou T, Huang Z, Liu Y, Qiu Y, Hou B, Sun D, Deng H (2014) Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC Plant Biol 14(1):226

    PubMed  PubMed Central  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci 97(21):11632–11637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163(11):1179–1184

    CAS  PubMed  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci 165(6):1411–1418

    CAS  Google Scholar 

  • Villalta I, Bernet G, Carbonell E, Asins M (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F 7 lines. Theor Appl Genet 114(6):1001–1017

    CAS  PubMed  Google Scholar 

  • Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP, Guarino L, Eastwood R, Leόn B, Maxted N (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Cons 167:265–275. https://doi.org/10.1016/j.biocon.2013.08.011

    Article  Google Scholar 

  • Viveros MFÁ, Inostroza-Blancheteau C, Timmermann T, González M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40(4):3281–3290

    Google Scholar 

  • Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q (2016) A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiol Plant 158(1):45–64

    CAS  PubMed  Google Scholar 

  • Wang H-S, Yu C, Tang X-F, Zhu Z-J, Ma N-N, Meng Q-W (2014) A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Rep 33(1):131–142

    CAS  PubMed  Google Scholar 

  • Wang H-Z, Zhang L-H, Jun M, Li X-Y, Yan L, Zhang R-P, Wang R-Q (2010) Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage. Agric Sci China 9(5):633–641

    Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55(2):183–192

    CAS  PubMed  Google Scholar 

  • Wang J-y, Tong S-m, Li Q-l (2013) Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochem Biophys Res Commun 432(2):262–267

    CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    CAS  PubMed  Google Scholar 

  • Wang Y, Qiu L, Dai C, Wang J, Luo J, Zhang F, Ma J (2008) Expression of insect (Microdera puntipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco. Plant Cell Rep 27(8):1349

    CAS  PubMed  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui M, Dandekar A, Fuchigami L (2007) Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. J Appl Hortic 9:3–8

    Google Scholar 

  • Webber M, Barnett J, Finlayson B, Wang M (2008) Pricing China’s irrigation water. Glob Environ Change 18(4):617–625

    Google Scholar 

  • Wei Y, Xu Y, Lu P, Wang X, Li Z, Cai X, Zhou Z, Wang Y, Zhang Z, Lin Z (2017) Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS ONE 12(5):e0178313

    PubMed  PubMed Central  Google Scholar 

  • Wu Q-S, Xia R-X, Zou Y-N (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44(1):122–128

    Google Scholar 

  • Wu X, Li J, Wu X, Liu Q, Wang Z, Liu S, Li S, Ma Y, Sun J, Zhao L (2016) Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance. Genet Mol Res 15:1–12

    Google Scholar 

  • Wullschleger SD, Yin T, DiFazio S, Tschaplinski T, Gunter L, Davis M, Tuskan G (2005) Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Can J For Res 35(8):1779–1789

    CAS  Google Scholar 

  • Xu WF, Shi WM (2007) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana constitutively overexpressing the tomato 14-3-3 protein TFT7. Plant Soil 301(1–2):17–28

    CAS  Google Scholar 

  • Xue Z-Y, Zhi D-Y, Xue G-P, Zhang H, Zhao Y-X, Xia G-M (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167(4):849–859

    CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    CAS  PubMed  Google Scholar 

  • Yamchi A, Jazii FR, Mousavi A, Karkhane A (2007) Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Δ 1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress. J Plant Biochem Biotechnol 16(1):9–15

    CAS  Google Scholar 

  • Yang R, Deng C, Ouyang B, Ye Z (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38(2):857–863

    CAS  PubMed  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124(3):343–352

    CAS  Google Scholar 

  • Yang Y, Tang N, Xian Z, Li Z (2015) Two SnRK2 protein kinases genes play a negative regulatory role in the osmotic stress response in tomato. Plant Cell, Tissue Organ Cult (PCTOC) 122(2):421–434

    CAS  Google Scholar 

  • Yang Z, Yan A, Lu R, Dai Z, Tang Q, Cheng C, Xu Y, Su J (2017) De novo transcriptome sequencing of two cultivated jute species under salinity stress. PLoS ONE 12(10):e0185863

    PubMed  PubMed Central  Google Scholar 

  • Yarra R, He S-J, Abbagani S, Ma B, Bulle M, Zhang W-K (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell, Tissue Organ Cult (PCTOC) 111(1):49–57

    CAS  Google Scholar 

  • Yasmin S, Zaka A, Imran A, Zahid MA, Yousaf S, Rasul G, Arif M, Mirza MS (2016) Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS ONE 11(8):e0160688

    PubMed  PubMed Central  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37(1):21–33

    CAS  PubMed  Google Scholar 

  • Zahedi SM, Abdelrahman M, Hosseini MS, Hoveizeh NF, Tran L-SP (2019) Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ Pollut 253:246–258

    CAS  PubMed  Google Scholar 

  • Zamir D, Tal M (1987) Genetic analysis of sodium, potassium and chloride ion content inLycopersicon. Euphytica 36(1):187–191

    CAS  Google Scholar 

  • Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30(3):389–398

    CAS  PubMed  Google Scholar 

  • Zhang H-X, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19(8):765

    CAS  PubMed  Google Scholar 

  • Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R (2004) The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220(2):262–270

    CAS  PubMed  Google Scholar 

  • Zhang J, Zeng L, Chen S, Sun H, Ma S (2018) Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress. Plant Physiol Biochem 126:11–21

    CAS  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    CAS  PubMed  Google Scholar 

  • Zhou J, Li F, Wang J-l, Ma Y, Chong K, Xu Y-y (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis. J Plant Physiol 166(12):1296–1306

    CAS  PubMed  Google Scholar 

  • Zhou S, Sauvé RJ, Liu Z, Reddy S, Bhatti S, Hucko SD, Fish T, Thannhauser TW (2011) Identification of salt-induced changes in leaf and root proteomes of the wild tomato, Solanum chilense. J Am Soc Hortic Sci 136(4):288–302

    CAS  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan Y-L, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci 139(1):41–48

    CAS  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33(11):1851–1863

    CAS  PubMed  Google Scholar 

  • Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18(1):83

    PubMed  PubMed Central  Google Scholar 

  • Ziaf K, Loukehaich R, Gong P, Liu H, Han Q, Wang T, Li H, Ye Z (2011) A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant Cell Physiol 52(6):1055–1067

    CAS  PubMed  Google Scholar 

  • Žižková E, Dobrev PI, Muhovski Y, Hošek P, Hoyerová K, Haisel D, Procházková D, Lutts S, Motyka V, Hichri I (2015) Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biol 15(1):85

    PubMed  PubMed Central  Google Scholar 

  • Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36(12):1211–1216

    Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the support of Director, ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India.

Funding

This research did not receive any specific grant from any external funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript was prepared by SPK, PM, DPM, and MA. Figures were prepared by SPK. Manuscript was reviewed and edited by NK.

Corresponding author

Correspondence to Sarvesh Pratap Kashyap.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest in this publication. All the authors contributed equally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, S.P., Kumari, N., Mishra, P. et al. Tapping the potential of Solanum lycopersicum L. pertaining to salinity tolerance: perspectives and challenges. Genet Resour Crop Evol 68, 2207–2233 (2021). https://doi.org/10.1007/s10722-021-01174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01174-9

Keywords

Navigation