Skip to main content

Advertisement

Log in

Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

An investigation of the distribution, fractionation and phytoavailability of antimony (Sb) and other heavy metals in soil sampled at various locations in the vicinity of a Sb mine revealed elevated levels of Sb, most certainly due to the mining activities. The concentration of Sb in the soil samples was 100.6–5045 mg kg−1; in comparison, the maximum permissible concentration for Sb in soil in The Netherlands is 3.5 mg kg−1, and the maximum permissible concentration of pollutant Sb in receiving soils recommended by the World Health Organization is 36 mg kg−1. The soil sampled near the Sb mine areas had also contained high concentrations of As and Hg. Root and leaf samples from plants growing in the Sb mine area contained high concentrations of Sb, with the concentration of Sb in the leaves of radish positively correlating with Sb concentrations in soil. The distribution of Sb in the soil showed the following order: strongly bound to the crystalline matrix > adsorbed on Fe/Mn hydrous oxides, complexed to organic/sulfides, bound to carbonates > weakly bound and soluble. Solvents showed varying levels of effectiveness in extracting Sb (based on concentration) from the soil, with \({\hbox{Sb}}_{{\hbox{NH}}_{\hbox{4}} {\hbox{NO}}_{\hbox{3}} } {\hbox{ $ > $ Sb}}_{{\hbox{EDTA}}} {\hbox{ $ > $ Sb}}_{{\hbox{HAc}}} {\hbox{, Sb}}_{{\hbox{H}}_{\hbox{2}} {\hbox{O}}} {\hbox{ $ > $ Sb}}_{{\hbox{NH}}_{\hbox{4}} {\hbox{OAc}}}\), in decreasing order. The concentration of easily phytoavailable Sb was high and varied from 2.5 to 13.2 mg kg−1, the percentage of moderately phytoavailable Sb ranged from 1.62 to 8.26%, and the not phytoavailable fraction represented 88.2–97.9% of total Sb in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afnor. (1994). Qualite des sols. Methodes d’analyses – recueil de norms francaises. Paris: Afnor.

  • Ainsworth, N., Cooke, J.A., & Johnson, M.S. (1990a). Distribution of antimony in contaminated grassland: I-Vegetation and soils. Environmental Pollution, 65, 65–77.

    Google Scholar 

  • Ainsworth, N., Cooke, J.A., & Johnson, M.S. (1990b). Distribution of antimony in contaminated grassland: II-Small mammals and invertebrates. Environmental Pollution, 65, 79–87.

    Google Scholar 

  • Ainsworth, N., Cooke, J. A., & Johnson, M. S. (1991). Biological significance of antimony in contaminated grassland. Water, Air and Soil Pollution, 57–58, 193–199.

    Article  Google Scholar 

  • Ashley, P. M., Craw, D., Graham, B. P., & Chappell, D. A. (2003). Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration, 77, 1–14.

    Article  Google Scholar 

  • Baroni, F., Boscagli, A., Protano, G., & Riccobono, F. (2000). Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution, 109, 347–352.

    Article  Google Scholar 

  • Belzile, N., Chen, Y. W., & Wang, Z. J. (2001). Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides. Chemical Geology, 174, 379–387.

    Article  Google Scholar 

  • Brun L. A., Maillet, J., Hinsinger, P., & Pepin, M. (2000). Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environmental Pollution, 111, 293–302.

    Article  Google Scholar 

  • Buschmann, J., & Sigg, L. (2004). Antimony (III) binding to humic substances: Influence of pH and type of humic acids. Environmental Science & Technology, 38, 4535–4541.

    Article  Google Scholar 

  • Byrd, J. T. (1990). Comparative geochemistries of arsenic and antimony in river and estuaries. The Science of the Total Environment, 97/98, 301–314.

    Article  Google Scholar 

  • Chang, A. C., Pan, G. X., Page, A. L., & Asano, T. (2002). Developing human health-related chemical guidelines for reclaimed water and sewage sludge applications in agriculture (94 pp). Division of Environmental Health, World Health Organization.

  • Chinese Society of Soil Sciences. (2000). Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press.

    Google Scholar 

  • Coughtrey, P. J., Jackson, D., & Thorne, M. C. (1983). Radionuclide distribution and transport in terrestrial and aquatic ecosystems (Vol. 3). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Crecelius, E. A., Johnson, C. J., & Hofer, G. C. (1974). Contamination of soils near a copper smelter by arsenic, antimony and lead. Water, Air and Soil Pollution, 3, 337–342.

    Google Scholar 

  • Crommentuijn, T., Sijm, D., de Bruijn, J., van den Hoop, M., van Leeuwen, K., & van de Plassche, E. (2000). Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. Journal of Environmental Management, 60, 121–143.

    Article  Google Scholar 

  • De Gregori, I., Fuentes, E., Olivares, D., & Pinochet, H. (2004). Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.). Journal of Environmental Monitoring, 6, 38–47.

    Article  Google Scholar 

  • De Gregori, I., Fuentes, E., Rojas, M., Pinochet, H., & Potin-Gautier, M. (2003). Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. Journal of Environmental Monitoring, 5, 287–295.

    Article  Google Scholar 

  • Dietl, C. (1997). Association of antimony with traffic-occurrence in airborne dust, deposition and accumulation in standardized grass cultures. The Science of the Total Environment, 205, 235–244.

    Article  Google Scholar 

  • DIN 19730 (1997). Bodenbeschaffenheit: Extraktion von Spurenelementen mit Ammoniumnitratlosung, Beuth, Berlin, Germany.

  • Dodd, M., Pergantis, S. A., Cullen, W. I., Li, H., Eigendor, G. K., & Reimer, K. J. (1996). Antimony speciation in freshwater plant extracts by using hydride generation-gas chromatography-mass spectrometry. Analyst, 121, 223–228.

    Article  Google Scholar 

  • Eikmann, T., & Kloke A. (1993). Nutzungs- und schutzgutbezogene Orientierungswerte fur (Schad-) stoffe im Boden. In D. Rosenkranz, G. Bachmann, G. Einsele, & H.-M. Harress (Eds.), Bodenschutz. Ergänzbares Handbuch der Maßnahmen und Empfehlungen für Schutz, Pflege und Sanierung von Böden, Landschaft und Grundwasser-1. Band. 14 Lfg. X/93. Berlin, Germany: Erich Schmidt.

    Google Scholar 

  • Fan, D. L., Zhang, T., & Ye, J. (2004). The Xikuangshan Sb deposit hosted by the Upper Devonian black shale series, Hunan, China. Ore Geology Reviews, 24, 121–133.

    Article  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. W. (2002a). Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews, 57 (1–2), 125–176.

    Article  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. W. (2002b). Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth-Science Reviews, 59(1–4), 265–285.

    Article  Google Scholar 

  • Filella, M., Belzile, N., Chen, Y. W., & Deng, T. L. (2003a). Contrasting geochemistry of antimony in lake sediments. Journal De Physique IV, 107, 471–474.

    Google Scholar 

  • Filella, M., Belzile, N., Chen, Y. W., Elleouet, C., May, P. M., Mavrocordatos, D., Nirel, P., Porquet, A., Quentel, F., & Silver, S. (2003b). Antimony in aquatic systems. Journal De Physique IV, 107, 475–478.

    Google Scholar 

  • Flynn, H. C., Meharg, A. A., Bowyer, P. K., & Paton, G. I. (2003). Antimony bioavailability in mine soils. Environmental Pollution, 124, 93–100.

    Article  Google Scholar 

  • Fowler, B. A., Goering, P. L. (1991). Antimony. In E. Merian, (Eds.), Metals and their compounds in the environment. New York, Basel, Cambridge: VCH, Weinheim.

    Google Scholar 

  • Gebel, T. (1997). Arsenic and antimony: comparative approach on mechanistic toxicology. Chemico-Biological Interactions, 107, 131–144.

    Article  Google Scholar 

  • Hammel, W., Debus, R., & Steubing (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41, 1791–1798.

    Article  Google Scholar 

  • He, M. C., & Yang, J. R. (1999). Effects of different forms of antimony on the rice during the period of germination and growth and antimony concentration in rice tissue. The Science of the Total Environment, 243/244, 189–196.

    Article  Google Scholar 

  • He, M. C., & Wan, H. Y. (2004). Distribution, speciation, toxicity and bioavailability of antimony in the environment. Prog Chem, 16(1), 131–135.

    Google Scholar 

  • He M. C., Xie N. Y., Yu W. D., & Yang R. B. (1994). Study on the effects of antimony in soils on the rice growth and residues (in Chinese). Agro-Environmental Protection (China), 13, 18–22.

    Google Scholar 

  • Iffland, R. (1988). In H. G. Seiler, H. Sigel, & A. Sigel (Eds.), Handbook on toxicity of inorganic compounds (chap. 7, pp. 67–76). New York: Marcel Dekker.

  • Jenkins, R. O., Craig, P. J., Goessler, W., Miller, D., Ostah, N., & Irgolic, K. J. (1998). Biomethlation of inorganic antimony compounds by an aerobic fungus: Scopulariopsis brevicaulis. Environmental Science and Technology, 32, 882–885.

    Article  Google Scholar 

  • Ji, H. B., He, M. C., & Zhao, C. Y. (2003). Research advances of the analytical methods in antimony speciation. Chinese Journal of Analytical Chemistry, 31(11), 1393–1398.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1985). Trace elements in soils and plants. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A. (1993). Behavioural properties of trace metals in soils. Applied Geochemistry, 2, 3–9.

    Article  Google Scholar 

  • Kane, J. S., Arbogast, B., & Leventhal, J. (1990). Characteristics of Devonian Ohio shale SDO-1 as a USGS geochemical reference sample. Geostandards Newsletter, XIV, 169–196.

  • Koch, I., Wang, L. X., Feldmann, J., Andrewes, P., Reimer, K. J., & Cullen, W. R. (2000). Antimony species in environmental samples. International Journal of Environmental and Analytical Chemistry, 77, 111–131.

    Google Scholar 

  • Lintschinger, J., Michalke, B., Schulte-Hostede, S., & Schramel, P. (1998). Studies on speciation of antimony in soil contaminated by industrial activity. International Journal of Environmental and Analytical Chemistry, 72, 11–25.

    Google Scholar 

  • Maiz, I., Arambarri, R., Garcia, R., & Millan (2000). Evaluation of heavy metal availability in contaminated soils by two sequential extraction procedures using factor analysis. Environmental Pollution, 110, 3–9.

  • Picard, C, & Bosco, M. (2003). Soil antimony pollution and plant growth stage affect the biodiversity of auxin-producing bacteria isolated from the rhizosphere of Achillea ageratum L. FEMS Microbiology Ecology, 46, 73–80.

    Article  Google Scholar 

  • Qi, W., & Cao, J. (1991). Background concentration of antimony in Chinese soils (In Chinese). Soil Bulletin, 22, 209–210.

    Google Scholar 

  • Qian, J., Wang, Z., Shan, X., Tu, Q., Wen, B., & Chen, B. (1996). Evaluation of plant availability of soil trace metals by chemical fractionation and multiple regression analysis. Environmental Pollution, 91, 309–315.

    Article  Google Scholar 

  • Shi, M., Fu, B., Jin, X., & Zhou, X. (1993). The antimony metallogeny in central part of Hunan province (in Chinese with English abstract) (151 pp). Changsha: Hunan Science and Technology Press.

  • Shotyk, W, Chen, B, & Krachler, M. (2005a). Lithogenic, oceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bog, Myrarnar, Faroe Islands. Journal of Environmental Monitoring, 7, 1148–1154.

    Google Scholar 

  • Shotyk, W., Krachler, M., & Chen, B. (2005b). Antimony: global environmental contaminant. Journal of Environmental Monitoring, 7, 1135–1136.

    Article  Google Scholar 

  • Singh, S. P., Tack, F. M., & Verloo, M. G. (1998). Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water, Air and Soil Pollution, 313–328.

  • Smith, K. S., & Huyck, H. L. O. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. In G. S. Plumlee & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, Part A: Society of Economic Geologists, Reviews in Economic Geology (v. 6A, pp. 29–70).

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (312 pp). Oxford: Blackwell Scientific Publications.

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  Google Scholar 

  • Tighe, M., Ashley, P., Lockwood, & Wilson, P. S. (2005). Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Science of the Total Environment, 347, 175–186.

    Article  Google Scholar 

  • Wagner, S. E., Peryea, F. J., & Filby, R. A. (2003). Antimony impurity in lead arsenate insecticide enhances the antimony content of old orchard soils. Journal of Environmental Quality, 32, 736–738.

    Article  Google Scholar 

  • Wilson, N. J., Craw, D., & Hunter, K. (2004). Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environmental Pollution, 129, 257–266.

    Article  Google Scholar 

  • Yang G. (1992). Environmental pollution in antimony mine area and the strategy of environmental protection. Paper presented at the 8th annual meeting, Hunan Society of Environmental Sciences and Engineering, Hunan, China.

  • Yudovich, Ya. E., & Ketris, M. P. (1994). Elements – Impurity in Black Shales (304 pp) (In Russian). Yekaterinburg, Ural: Ural Science Publication.

Download references

Acknowledgments

The author is grateful to Dr. Dave Craw (University of Otago) and a second anonymous editor and to the reviewers for their constructive comments. The author was a visiting scholar (2005–2006) in the Department of Geography and Environmental Engineering, Johns Hopkins University and acknowledges Prof. William P. Ball, Johns Hopkins University, for his assistance during the visit and in writing the manuscript. The project was supported by Natural Science Foundation of China (No. 29977002) and National Basic Research Program of China (No. 2004CB418502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengchang He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environ Geochem Health 29, 209–219 (2007). https://doi.org/10.1007/s10653-006-9066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-006-9066-9

Keywords

Navigation