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Abstract 1 

Africa is thought to be the region most vulnerable to the impacts of climate variability 2 

and change. Agriculture plays a dominant role in supporting rural livelihoods and 3 

economic growth over most of Africa. Three aspects of the vulnerability of food crop 4 

systems to climate change in Africa are discussed: the assessment of the sensitivity of 5 

crops to variability in climate, the adaptive capacity of farmers, and the role of 6 

institutions in adapting to climate change. The magnitude of projected impacts of 7 

climate change on food crops in Africa varies widely among different studies. These 8 

differences arise from the variety of climate and crop models used, and the different 9 

techniques used to match the scale of climate model output to that needed by crop 10 

models. Most studies show a negative impact of climate change on crop productivity 11 

in Africa. Farmers have proved highly adaptable in the past to short- and long-term 12 

variations in climate and in their environment. Key to the ability of farmers to adapt to 13 

climate variability and change will be access to relevant knowledge and information. 14 

It is important that governments put in place institutional and macro-economic 15 

conditions that support and facilitate adaptation to climate change at local, national 16 

and transnational level. 17 

 18 

1.  Introduction 19 

Agricultural systems are vulnerable to variability in climate, whether naturally-forced, 20 

or due to human activities. Vulnerability can be viewed as a function of the sensitivity 21 

of agriculture to changes in climate, the adaptive capacity of the system, and the 22 

degree of exposure to climate hazards (IPCC, 2001b, p.89). The productivity of food 23 

crops is inherently sensitive to variability in climate. Producers in many parts of the 24 

world have the physical, agricultural, economic and social resources to moderate, or 25 

adapt to, the impacts of climate variability on food production systems. However, in 26 

many parts of Africa this is not the case, making agricultural systems particularly 27 

vulnerable (Haile, 2005). This is in part because a large fraction of Africa’s crop 28 

production depends directly on rainfall. For example, 89% of cereals in sub-Saharan 29 

Africa are rainfed (Cooper, 2004). In many parts of Africa, climate is already a key 30 

driver of food security (Gregory et al., 2005; Verdin et al., 2005).  31 

 32 

Climate change due to greenhouse gas emissions is expected to increase temperature 33 

and alter precipitation patterns. All projections of climate change are subject to 34 
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uncertainties arising from limitations in knowledge. Some of these limitations can be 1 

quantified: future greenhouse gas levels, for example, cannot be known with 2 

precision, but an understanding of socio-economics and atmospheric processes can be 3 

used to produce a range of plausible values. This quantification leads to prediction 4 

ranges: one study of southeast Africa, for example, projects annual rainfall changes of 5 

between -35 and +5% (IPCC 2001a, Fig 10-3). Climate change adds stress and 6 

uncertainty to crop production in Africa, where many regions are already vulnerable 7 

to climate variability. Crop production in such regions is therefore expected to 8 

become increasingly risky (Slingo et al., 2005). 9 

 10 

Agriculture in the semi-arid regions of Africa is based on small-scale, climatically 11 

vulnerable systems where livestock is an important multi-purpose component of 12 

farming systems. Agriculture provides food, income, power, stability and resilience to 13 

rural livelihoods (Ruthenberg, 1976; Chambers and Conway, 1992; Mortimore, 1998; 14 

Bird and Shepherd, 2003). In the adjoining drier areas, food crop production is 15 

marginal or not viable due to insufficient length of moisture growing period, high 16 

rainfall variability and frequent occurrence of severe drought. Here, agropastoral 17 

systems, relying on natural rangelands for forage, dominate but are geographically, 18 

agriculturally, socio-culturally and economically linked to the mixed farming systems 19 

of the semi-arid regions (Sidahmed, 1996; Mortimore, 1998). During the times of 20 

severe drought stress and emergencies, coping mechanisms in the drier areas rely on 21 

the buffer provided by the relatively less vulnerable semi-arid regions. This ‘safety 22 

net’ relationship is not certain to remain intact in the face of climate change; indeed, it 23 

may be negatively affected over much of Africa. Further, economic development, 24 

increased urbanization and rapid population growth are likely to reduce per capita 25 

water availability throughout Africa and climate change is expected to exacerbate this 26 

situation, particularly in the seasonally dry areas (Cooper, 2004; IPCC, 2001b). 27 

 28 

Climate change is expected to impact both crops and livestock systems (FAO, 2003). 29 

This paper focuses principally on three aspects of food crop systems: the sensitivity of 30 

crops to climate; the adaptive capacity of farmers; and the role of institutions in 31 

adapting to climate change. We start by briefly reviewing the science of African 32 

climate change (Section 2). Then, we consider the sensitivity of crop productivity to 33 

climate change, and how it can be assessed using numerical climate and crop models 34 
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(Section 3). The use of these different methods, and the methods that simulate the 1 

broader impacts on cropping systems, such as land use, are then discussed (Section 4). 2 

Section 5 considers the capacity of farmers to adapt to climate variability and change. 3 

Then, the capacity of research and government institutions to react to changes of 4 

climate on seasonal to decadal timescales is discussed (Section 6).  5 

 6 

2.  Climate change in Africa 7 

There are many model-based projections of climate change across Africa. The range 8 

of the projected changes is considerable and arises because of the different input 9 

assumptions (namely greenhouse gas emission levels) and model physics (usually 10 

represented by the range of climate models and/or values of physical parameters 11 

used). Furthermore, projections vary geographically, with computer processing power 12 

limiting the spatial resolution of climate models. Hence there are inherent 13 

uncertainties associated with climate change predictions. The response of climate to 14 

greenhouse gas emissions is not equally uncertain across meteorological variables; 15 

temperature changes are usually more narrowly constrained than changes in 16 

precipitation, for instance. IPCC (2001a) provides more detail on all of these issues.  17 

 18 

The results reported in IPCC (2001a,b) suggest temperature changes over the coming 19 

decades for Africa of between 0.2 and 0.5 
o
C per decade, with the greatest warming in 20 

interior regions. The sign of changes in mean precipitation in many parts of Africa 21 

varies across climate models. Of three macro-regions of sub-Saharan Africa (West, 22 

East and Southern) reviewed in IPCC (2001b) only one shows consistent temperature 23 

and precipitation projections across climate models (the West region shows consistent 24 

changes for Dec.-Jan.; the Southern for June-Aug.; see also Washington et al., 2004). 25 

More recent studies also show conflicting evidence: for example, Held et al. (2003) 26 

show a drier Sahel in the late 21st century, whilst Kamga et al. (2005) show a wetter 27 

Sahel. These results reflect the uncertainty described above. The magnitude of 28 

projected rainfall changes for 2050 in IPCC (2001b) is small in most African areas, 29 

but can be up to 20% of 1961-1990 baseline values. The climate models used by 30 

Huntingford et al. (2005) also suggest that changes in mean monthly precipitation (in 31 

the African region 5−15 
o
N) may be small. However the results also show an increase 32 

in the occurrence of extreme values in both rainfall (wet/dry years) and temperature. 33 

These changes, which are likely to be more robust than changes in mean rainfall 34 
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(Coppola and Giorgi, 2005), could have serious repercussions on crop production. 1 

Indeed, extreme events have long been recognised as being a key aspect of climate 2 

change and its impacts (IPCC, 2001a). In a review, Dore (2005) found increasing 3 

variance in recent observations of precipitation across the tropics, suggesting the 4 

emergent importance of extremes in many regions. 5 

 6 

It is changes on the spatial scale of cropping systems (i.e. the field) that are likely to 7 

have the greatest impact on crop production. Climate model output does not provide 8 

information on this scale. In the long term, ongoing increases in computer power, and 9 

hence climate model resolution, may provide information much nearer to this scale. 10 

Meanwhile, regional climate modelling (see e.g. Song et al., 2004) provides a tool for 11 

downscaling information in a physically consistent way (Wilby and Wigley, 1997).  12 

For example, using a regional climate model, Arnell et al. (2003) produced high 13 

resolution rainfall and runoff scenarios for southern Africa for the 2080s. They found 14 

both positive and negative changes in average annual rainfall of up to 40%, though 15 

most places showed smaller changes. The changes were of similar magnitude to those 16 

in the large-scale climate simulations used to drive the regional climate model.  17 

 18 

The importance of spatial scale results not only from the need for high resolution 19 

information for sectors such as agriculture. The resolution of climate models has an 20 

impact on the skill of the simulations in reproducing observed climate (e.g. Inness et 21 

al., 2001). Processes that occur at the sub-grid scale, such as convection, must be 22 

parameterised and this can lead to significant errors (e.g. Lebel et al., 2000; 23 

Huntingford et al., 2005). Spatial scale, extreme events, model error, and uncertainty 24 

are key issues arising from the use of climate change projections with impacts 25 

assessments. These issues are revisited over the next two sections. 26 

 27 

3.  Predicting the sensitivity of crop productivity to climate 28 

 29 

The sensitivity of crops to climate change can be investigated through plant 30 

experiments that quantify the direct effects of elevated concentrations of atmospheric 31 

CO2 and ozone (e. g. Long et al., 2005) and changes in climate that can result from 32 

greenhouse gas emissions, such as: warmer mean temperatures (Roberts and 33 

Summerfield, 1987) and levels of temperature and water  stress (Wheeler et al., 2000; 34 
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Wright et al., 1991). A doubling of CO2, for example, increases the yield of many 1 

crops by about one third (Kimball, 1983; Poorter, 1993), primarily as a result of 2 

higher rates of photosynthesis in crops that have the C3 photosynthetic pathway 3 

(Bowes, 1991). The rate of photorespiration is reduced at elevated CO2 (Drake et al., 4 

1997), and because photorespiration increases with warmer temperatures, any increase 5 

in net photosynthesis due to elevated CO2 is expected to be greatest at warmer 6 

temperatures (Long, 1991). 7 

 8 

The results of plant experiments are used to inform crop modelling. Process-based 9 

crop simulation models attempt to provide the equations that describe plant 10 

physiology and crop responses to weather and climate. These responses are affected 11 

by genotype, environment and farm management practices.  A number of broad types 12 

of crop simulation models have developed: for example, SUCROS and related models 13 

(Bouman et al., 1996), the IBSNAT models (Uehara and Tsuji, 1993), and the APSIM 14 

model (McCown et al., 1996). All such models allow prediction of crop performance 15 

ahead of time, and provide a commonly used tool to simulate how climate (and other 16 

factors) will affect crops on seasonal timescales.  17 

 18 

It is impossible to directly demonstrate predictability in crop yield in potential future 19 

climates on decadal timescales. Nevertheless, the basis for prediction is supported by 20 

a number of research efforts: building understanding of fundamental bio-physical 21 

processes (e.g. Porter and Semenov, 2005); simulation of the processes that are likely 22 

to be important under climate change (e.g. Challinor et al., 2006); demonstration of 23 

robust relationships between crops and climate using observations (e.g. Camberlin 24 

and Diop, 1999; Challinor et al., 2003); skilful seasonal prediction by crop models 25 

using observed weather data (e.g. Challinor et al., 2004) and reanalysis (Challinor et 26 

al., 2005a); and operational seasonal forecast systems (Stone and Meinke, 2005). 27 

 28 

Research effort in crop modelling has focused on the world’s major food crops. A 29 

consequence of this is that the simulation of some crops and crop varieties common to 30 

African farming systems, such as sorghum, millets, banana and yam, is less well 31 

developed. The simulation of annual and/or perennial crops grown as intercrops 32 

across Africa is also poorly represented; a surprising situation given the vast areas of 33 

formal and informal intercropping found across the region. 34 
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 1 

Climate models typically operate on spatial scales much larger than those of crop 2 

models (Hansen and Jones, 2000; Challinor et al., 2003; Baron et al., 2005). To 3 

overcome this, climate data can be downscaled to the scale of a crop model (e.g., 4 

Wilby et al., 1998), or a crop model can be matched to the scale of climate model 5 

output (e.g., Challinor et al., 2004). Downscaling of climate output can be done 6 

empirically, relying on observed relationships between local climate and large-scale 7 

flow. However, these relationships may be violated in future climates (Jenkins and 8 

Lowe, 2003). Downscaling using a dynamical model provides a more robust method 9 

because most of the uncertainty in the climate model is in the large-scale flow. The 10 

uncertainty in dynamical downscaling is therefore relatively small (Jenkins and Lowe, 11 

2003). Mearns et al. (2001) showed that the difference between yields simulated with 12 

a climate model and those simulated with dynamically downscaled output can be 13 

significant. 14 

 15 

High resolution modelling of climate is becoming increasingly feasible as computer 16 

power increases (e.g. http://www.earthsimulator.org.uk/index.php). Since even these 17 

resolutions are far larger than the scale of traditional crop models, the move towards 18 

higher resolution can only aid comparatively large-area crop modelling efforts. The 19 

spatial scale of a crop model is related to its complexity; a crop model should be 20 

sufficiently complex to capture the response of the crop to the environment whilst 21 

minimising the number of parameters that cannot be estimated directly from data 22 

(Katz, 2002; Sinclair and Seligman, 2000). The larger the number of unconstrained 23 

parameters the greater the risk of reproducing observed yields without correctly 24 

representing the processes involved. Such over-tuning decreases the credibility of the 25 

model when it is run with climate change data. Efforts to predict crop productivity 26 

using large-scale data inevitably involves some simplification in model input data 27 

and/or the way in which crop growth is simulated. This can also reduce the risk of 28 

over-tuning. 29 

 30 

It is important for studies of climate change to capture the impacts of short-term 31 

climate variability on crops. Statistical relationships for the current climate (e.g. 32 

Doorenbos and Kassam, 1979) will probably cease to hold outside the present range 33 

of crop growth and climatic variations as CO2 concentration rises and patterns of 34 
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temperature and intra-seasonal precipitation change. Extreme events such as floods, 1 

droughts and high temperature episodes may become more frequent in parts of Africa, 2 

and this could have large impacts on crop productivity (Wheeler et al., 2000; Porter 3 

and Semenov, 2005). The importance of climate extremes lead Easterling et al. (1996) 4 

to argue that in order to simulate yields under future climates, crop models should first 5 

be assessed on their ability to simulate the impact of extreme events. Whilst this is 6 

important, the ability of models to simulate the impacts of unprecedented changes in 7 

mean climate is clearly important also. However, extreme events can act as an 8 

indicator in another sense: the ability of society to deal with extremes of climate, and 9 

climate variability in general, can be used to assess vulnerability to climate change 10 

(Kates, 2000). 11 

 12 

Climate models are not always able to accurately simulate current climates. It has 13 

even been argued that there is insufficient skill for output from these models to be 14 

used in climate change impacts assessments without prior bias correction (Semenov 15 

and Barrow, 1997). Climate models are particularly prone to errors in rainfall, so that 16 

in impacts studies it is sometimes excluded altogether (Mall et al., 2004) or modified 17 

prior to use (Žalud and Dubrovsky, 2002). If confidence in the daily time series of 18 

weather from a climate model is low, the statistics of that time series (possibly 19 

differenced with the statistics of a current climate simulation) can be used in 20 

conjunction with a weather generator to create a new time series (Semenov and 21 

Barrow, 1997). This method is often incorporated into statistical downscaling 22 

methods, but again relies on current observed relationships to derive future weather. 23 

The choice of parameters for a weather generator can alter the magnitude and even the 24 

sign of changes in crop yield (Mavromatis and Jones, 1998). As an alternative, flux 25 

correction can be used with a coupled climate model (Mavromatis and Jones, 1999), 26 

thus correcting errors (at least in current climates) much closer to the source. 27 

 28 

Even on seasonal lead times, climate models are prone to error; seasonal predictions 29 

from single climate model ensembles often fail to capture the full range of uncertainty 30 

inherent in the initial conditions of the model. Hence, climate models can 31 

underestimate uncertainty even on a seasonal timescale. Using a multi-model 32 

approach can improve reliability (Palmer et al., 2005). Different climate models can 33 

also produce differences in the magnitude and sign of crop yield estimates (Tubiello et 34 
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al., 2002). Therefore, the use of multi-model ensembles also allows crop modelling 1 

studies to sample more fully the variability in climate model output (Challinor et al., 2 

2005b). 3 

 4 

4. Assessing the impacts of climate change on cropping systems 5 

The discussion above has focussed on the simulation of crop yield. We now move on 6 

to discuss the use of these methods in impacts assessments. It is not only yield 7 

impacts that are important here, but also the methods used to simulate and understand 8 

changes in land use, adaptive measures, and market mechanisms. 9 

 10 

Examples of crop yield impacts assessments are shown in Table 1. These illustrate the 11 

diversity of yield scenarios that have been produced. Whilst the magnitude of the 12 

response of crop yield to climate change varies considerably, the sign of the change is 13 

mostly negative. However, direct comparison between these studies is difficult for a 14 

number of reasons: they encompass a range of different regions and crops; the 15 

uncertainty ranges can come from a number of different sources (spatial variability in 16 

yield, uncertainty in climate/emissions information, different crop simulation 17 

methods). Hence yield impact studies sample uncertainty randomly and the estimates 18 

of uncertainty are not precise. Furthermore, whilst there is a consensus that crop 19 

yields in many parts of Africa will decrease (both in Table 1, and more broadly: 20 

IPCC, 2001b), this consensus is not objectively determined. Multi-model ensembles 21 

(see Section 3) and model parameter perturbation methods (see Challinor et al., 22 

2005c) enable a move towards a more complete sampling of uncertainty in crop 23 

yields. 24 

 25 

 The type of crop model used in assessments of the impact of climate change should 26 

be considered when interpreting the yield projections such as those in Table 1. 27 

Integrated assessments (e.g. Fischer et al., 2002, 2005; Parry et al., 2004; Rosegrant 28 

and Cline, 2003) often use empirical approaches to simulate crop response to water 29 

deficits, such as the FAO method (Doorenbos and Kassam, 1979), or yield transfer 30 

functions (e.g. Iglesias et al., 2000). The FAO method is relatively robust as it is 31 

based on a proven conservative relationship between biomass and water use for well-32 

watered and water deficit conditions (Hsiao and Bradford 1983; Hsiao,1993), and the 33 

crop specific relationships are normalized across environments. Yield transfer 34 
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functions are usually derived from crop model output, since this is more easily 1 

produced than crop yield observations. However, significant differences can exist 2 

between a transfer function and the crop model from which it is derived (Challinor et 3 

al., 2006). In general, whilst empirical approaches tend to use a level of complexity 4 

that is appropriate to large scales, they use monthly data and therefore do not simulate 5 

the impact of changes in intra-seasonal rainfall or temperature variability. Rather, they 6 

assume a degree of stationarity in derived crop—weather relationships which, as with 7 

the empirical relationships used in weather generators, may not hold as environmental 8 

conditions change. 9 

 10 

Some climate change studies consider only changes in crop yield for a given number 11 

of emissions scenarios. Increased realism and relevance can come from addressing 12 

issues such as: how yield may differ as a result of adaptive measures; how production 13 

levels might change as the area under cultivation changes and what impact such a 14 

change in crop productivity may have on livelihoods. Integrated assessments seek to 15 

combine crop yield scenarios with socio-economic scenarios that account for some or 16 

all of these factors in order to estimate the societal impact of climate change. Fischer 17 

et al. (2002) used four climate models in order to estimate potential changes in both 18 

world market prices of crops and GDP for 2080. Market prices showed systematic 19 

bias according to climate model. For example, the NCAR model simulated a 10% fall 20 

in prices due to climate change for both A2 and B2 emission scenarios, but an 21 

increase in prices was found with HadCM3. Thus, firm conclusions are difficult to 22 

draw. Nevertheless, GDP in Africa was projected to be lower under climate change 23 

than in the relevant reference scenario in 10 out of the 11 simulations.  24 

 25 

Incremental use of adaptive measures across a range of timescales is likely to 26 

determine the response of food production to climate change. From the adoption of 27 

new cultivars, and crop and resource management strategies to changes in the 28 

infrastructure supporting irrigation, these timescales vary from a few years up to tens 29 

of years (e.g. Reilly and Schimmelpfennig, 1999). Some adaptive measures, such as a 30 

change in planting date, can be incorporated relatively easily into impacts assessments 31 

(e.g. Southworth et al, 2002). Regional-scale measures such as those relating to the 32 

development of new cultivars (e.g. Rosegrant and Cline, 2003) or irrigation 33 

infrastructure can be included (Parry et al., 2004), but are harder to parameterise in a 34 
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well-constrained fashion in the absence of any meaningful assumptions about the 1 

accompanying crop management practices. Such studies will therefore have a high 2 

degree of associated uncertainty.  3 

 4 

Another adaptive measure is expansion into newly created cropland. The biophysical 5 

suitability of land for crop cultivation is a function of climate and soil, and efforts 6 

have been made to model this relationship (e.g. FAO, 1978-81; Ramankutty et al., 7 

2002). Whether the increasing demand for food due to population rise will be met 8 

primarily by extensification or intensification depends both on this suitability and on 9 

the yield attainable from the land (Gregory and Ingram, 2000) as well as on the 10 

growth of national economies and of income-driven effective demand for food. 11 

Trends since the 1980s show both yields and cultivated area rising (Cockcroft, 2001). 12 

However, yields in Africa remain amongst the lowest in the world: in sub-Saharan 13 

regions, for example, mean rainfed cereal yields are 0.8 tons/ha, which is 0.4 tons/ha 14 

below the lowest figure for any other region (Cooper, 2004). During the past 50 years, 15 

some 60% of the growth in cereal output in Africa has been from area expansion and 16 

40% from yield increase. Given the three-fold expected increase in population by the 17 

end of this century, Africa cannot afford to be complacent about addressing the 18 

growing challenge of food security and sustainability as land use expansion and 19 

intensification accelerate against the background of increasing vulnerability to climate 20 

change.  21 

 22 

5. The adaptive capacity of farmers  23 

In the socio-economics literature on rural livelihoods, it is widely accepted that 24 

farming households face three main sources of vulnerability (Ellis, 2000): shocks 25 

(unexpected extreme events, for example the sudden death of a family member, or an 26 

extreme weather event), seasonal variations (including variations in periodicity and 27 

amount of rainfall) and long term trends (such as increases in input prices, or long 28 

term changes in mean temperature and rainfall). The discussion in sections 2-4 29 

suggests that problems from all three are likely to increase in intensity, particularly for 30 

farmers relying on rain-fed production.  31 

 32 

Small-scale farming provides most of the food production in Africa, as well as 33 

employment for 70% of working people. These small-scale producers already face the 34 
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challenges of climate variability in current climates. For example, intra-seasonal 1 

distribution of rainfall affects the timing and duration of the possible cropping season, 2 

and periods of drought stress during crop growth. Cropping practices that are often 3 

used to mitigate the effects of variable rainfall include: planting mixtures of crops and 4 

cultivars adapted to different conditions as formal or informal intercrops; using crop 5 

landraces that are more resistant to climate stresses; using crop trash as a mulch; 6 

planting starvation-reserve crops; and a variety of low-cost water-saving measures. 7 

Such coping responses at the farm-level can become insufficient when droughts are 8 

more widespread and severe, particularly when consecutive drought years lead to loss 9 

of seed stocks and biodiversity and/or draught animals, or are combined with low 10 

capital reserves for coping and with other economic or social stresses to the food 11 

system. Thus, farmers can cope up to a certain limit and their livelihoods can maintain 12 

a measure of resilience to shocks, but not indefinitely. Once their capital assets (e.g. 13 

savings, seed stocks, draught animals, social capital) erode away beyond a certain 14 

threshold level, they are forced to succumb in the absence of any effective local or 15 

national level support mechanism such as for replenishing seed stocks or draught 16 

power or non-farm employment. Such was the situation that occurred in the 17 

Zimbabwe draught (Bird and Shepherd, 2003). 18 

 19 

 So, one major question is whether the resilience of farmers to climate variability will 20 

alter in a changing climate. Farmers face the challenge of managing water supplies 21 

more efficiently and effectively (Cooper 2004). Participatory research between 22 

scientists and farmers has shown some local successes in developing more efficient 23 

rainwater harvesting techniques but a more concerted effort by scientists to work 24 

closely with farmers is called for (Ellis-Jones and Tengberg, 2000). Farmers report 25 

that among the benefits of improved fallows using agroforestry species are an increase 26 

in water infiltration, reduced run-off (and hence erosion) and an increase in the water 27 

holding capacity of soils (Kwesiga et al., 2005). In contrast, staple crops may prove 28 

no longer viable in some areas, for example maize in the drier reaches of its current 29 

production zone, and groundnuts in the dryer parts of the Sahel (Dietz et al., 2004). 30 

 31 

Farming and food systems in sub-Saharan Africa have proved highly adaptable in the 32 

past, both to short term variations and longer term changes in the physical, climatic 33 

and socio-economic environment. Boserup (1965) was one of the first to point to the 34 
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dynamism of farming systems as rural societies in Africa and elsewhere respond to 1 

changes in population density, while anthropologists documented the changes in land 2 

tenure and other institutions as the planting of new cash crops expanded to meet 3 

trading opportunities in the nineteenth century (Hill, 1963). The fact that most staple 4 

food crops in sub-Saharan Africa have their origins on other continents is a testament 5 

to the adaptability of farmers and farming systems to respond to new opportunities 6 

created by the movement of knowledge and genetic material along trade routes. 7 

 8 

More recently, many local studies have shown how farmers have developed 9 

innovative responses to difficult or changing environmental conditions and introduced 10 

technological and management changes to create more sustainable and resilient 11 

production systems (Reij and Waters-Bayer, 2001), even in the relatively marginal 12 

environments that characterise much of the farming landscape in African countries 13 

(Haggleblade et al., 1989; Tiffen et al; 1994). However, extreme events of a 14 

transnational nature such as the severe drought years in the 1970s and 1980s in Sub-15 

Saharan Africa, and more recently in Southern Africa, have shown that the adaptation 16 

abilities of many individual farmers and communities do not extend to coping with 17 

such extreme events in absence of outside support. Similarly, national and local 18 

vulnerability to floods due to extreme climate events was demonstrated in 19 

Mozambique not so long ago (NEF, 2005).  In the light of the above, it is clear that 20 

resilience to risks associated with climatic variability and extreme events depends on 21 

adaptation and coping strategies at local, sub-national and national, and transnational 22 

level. Adaptive capacity varies considerably among regions, countries and 23 

socioeconomic groups because the ability to adapt and cope with climate change is a 24 

function of governance and national security strategies, wealth and economic 25 

development, technology, information, skills, infrastructure, institutions, and equity 26 

(IPCC, 2001b; Sen, 2000).     27 

 28 

On a national scale, food systems have been undergoing rapid change as a result of 29 

urbanization and the liberalising trade agenda. Imports of ‘cheaper’ food (e.g. rice and 30 

poultry in Ghana: Koomson, 2005) to feed the growing urban populations are putting 31 

pressure on local production and distribution systems which cannot compete on price. 32 

At the same time, Africa continues to require a large quantity of food aid to meet the 33 

food needs of people suffering from climate related stress such as drought or floods or 34 
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locusts. On the one hand, this demonstrates that national food security does not 1 

necessarily depend on domestic production: one impact of climate change may well 2 

be changes in patterns of trade, with countries whose agriculture is negatively affected 3 

relying more on the international market for purchase of food. On the other hand, a 4 

downturn in prices due to liberalisation of markets makes it even harder for farmers 5 

who are already trying to cope with climate variability and change to maintain their 6 

farms and their livelihoods. 7 

 8 

At a basic level, for many farmers the challenge will be whether they can continue to 9 

farm. Already rural livelihoods at household level are highly diverse, with farming 10 

accounting for a lower proportion of disposable income and food security for farming 11 

households than twenty years ago. For example, Bryceson (2000) concludes that 12 

“diversification out of agriculture has become the norm among African rural 13 

populations”. There is evidence that households moving out of poverty are those 14 

moving either completely or partially out of farming (Ellis and Bahiigwa, 2002; 15 

Bryceson, 2000). It is likely that many households will respond to the challenge of 16 

climate change by seeking further to diversify into non-farm livelihood activities 17 

either in situ or by moving (or sending more family members) to urban centres. For 18 

these households, farming may remain as (or revert to) a semi-subsistence activity 19 

while cash is generated elsewhere. This would be simply a continuation of a well-20 

established trend towards pluriactive, multi-locational families and the transfer of 21 

resources through urban-rural remittances (Manvell, 2005). However, given the acute 22 

population and development related challenges faced by most African nations, many 23 

households will be forced to remain in the farming sector for livelihood and security 24 

for some time to come as the population in Africa undergoes a three-fold increase this 25 

century. This will lead to considerable demand for expansion of area under small-farm 26 

cultivation for staple crops. Farming for profit, particularly production for 27 

international markets, may therefore become more concentrated on fewer farms, as is 28 

already happening in the fresh vegetable export market from eastern and southern 29 

Africa: companies with the capital to invest in controlling their production 30 

environment through irrigation, netting and crop protection in order to meet stringent 31 

quality and bio-safety requirements of European supermarkets are increasing their 32 

market share at the expense of smallholders (Dolan and Humphreys, 2000; Gregory et 33 
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al., 2005). This should lead to further irrigation development, for which there is 1 

potential in all regions of Africa.  2 

 3 

Fraser et al. (2003) proposed a theoretical framework for assessing whether societies 4 

or nations are well placed to adapt to climate change, building on the two concepts of 5 

social resilience and environmental sensitivity and suggest how that might be applied 6 

in a subsistence agriculture context. Community management of natural resources can 7 

enhance adaptability in two ways: “by building networks that are important for coping 8 

with extreme events and by retaining the resilience of the underpinning resources and 9 

ecological systems.” (Tompkins and Adger, 2004).  The development of strategies to 10 

adapt to variability in the current climate may also build resilience to changes in a 11 

future climate (Slingo et al, 2005). It is important that those affected by risk of future 12 

events are involved in adaptive measures and that those measures are compatible with 13 

existing decision-making processes (Smit and Pilisofova, 2001). Smit and Pilisofova 14 

(2001) also suggest that the determinants of adaptive capacity include not only the 15 

economic resources and technology to deal with change, but also information and 16 

skills, institutions, infrastructure and equity. This concurs with Dilley (2000) who 17 

concludes that communication of information could contribute to improved 18 

management of climate variability due to ENSO events in Africa. 19 

 20 

So, a key ingredient in the ability of farmers to cope with or adapt to climate 21 

variability and change is their access to relevant knowledge and information that will 22 

allow them to modify their production systems. Some of this knowledge is already 23 

part of local knowledge systems, such as varying planting dates in response to 24 

seasonal variations in rainfall onset and intensity; some will come from outside the 25 

local system, such as new varieties more tolerant to drought or with shorter growing 26 

seasons. Current and prospective institutional changes in the way knowledge is 27 

created and information communicated offer grounds for cautious optimism that the 28 

availability of and access to appropriate knowledge will improve. Monolithic 29 

government extension services are giving way to pluralistic, locally responsive 30 

information systems where farmers have a stronger voice in determining priorities 31 

(Rivera and Alex (eds.), 2004). Farmer Field Schools and other farmer-centred 32 

approaches to learning and communication are becoming more widespread and our 33 

understanding of how these processes work is improving (Percy, 2005). National 34 
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research systems are being restructured to increase the relevance of research and 1 

technology development, though questions remain over the level of funding that will 2 

be made available by national governments and external development partners 3 

(Byerlee et al., 2002). Reij and Waters-Bayer (2001) demonstrate that farmer 4 

innovation can be facilitated and intensified through supportive policies and 5 

institutionalised in the working practices of research and advisory systems. A key 6 

issue, then, is whether governments can put in place or encourage institutional and 7 

macro-economic conditions that support and facilitate adaptation to a changing 8 

climate. 9 

 10 

6.  Capacity of institutions to adapt to climate change 11 

Central to the effective management of national agricultural and rural development is 12 

the system of public institutions set up by governments, and the professionals that 13 

work in them. The institutions must have the right kinds of people and contribute to 14 

the formulation and execution of policy and institutional services for national 15 

development at three interlinked levels – central (national), intermediate (province 16 

and districts) and local. 17 

 18 

Centrally, at the level of the nation, institutional capacity is required to produce 19 

strategic long-term national land use development and management plans to facilitate 20 

integrated policy decisions, legislation, administrative actions and budgeting, 21 

including for emergency response to provide a safety net and supply replenishments 22 

such as seeds. At the intermediate level in provinces and districts, institutional 23 

capacity is required to formulate more specific and detailed programmes based on the 24 

national strategies and programmes, and to enable and monitor their implementation 25 

at the local levels. The institutional capacity at the local levels must be able to provide 26 

the field services of different ministries and departments for the different sectors or 27 

commodities. Consequently, at all levels, geographically referenced databases of 28 

information and knowledge relating to climatic and other natural resources, land use 29 

and land potentials, continuously kept up-to-date, are essential for the formulation and 30 

execution of policy for sustainable development in agriculture and the rural sector. 31 

Few nations have such databases to meet current development needs of their 32 

populations. They become even more important for understanding and responding to 33 

national and local level vulnerability to climate change of economic activities, 34 



 17 

particularly agriculture and the water sector. A significant capacity building effort in 1 

support of policy and development management has been directed by FAO and its 2 

partners in this direction in recent years (e.g., Kassam et.al., 1982; Kassam et. al., 3 

1990; FAO, 1993; Voortman et al., 1999; Fischer and van Velthuizen, 1996), but 4 

much more is needed, including the incorporation of climate induced natural disasters 5 

and climate change implications for national and sub-national analyses and 6 

development planning.   7 

 8 

Institutional capacity for climate risk management preparedness strategies and for 9 

agrometerological adaptation strategies to cope with the consequences of climate 10 

change in Africa is poor, or non-existent in many African countries (WMO, 2005).  11 

Remedying the situation will need sustained efforts to strengthen the 12 

agrometeorological capacity of national and regional meteorological services.  Given 13 

the strategic dependence of livelihoods on natural resources in Africa, efforts will be 14 

required to implement effective and longer-term agrometeorological programmes to 15 

adapt production systems to climatic resources; to adequately monitor climatic 16 

variability and extreme events and in collaboration with other stakeholders to support 17 

the generation of other data such as cost-benefit assessments required to characterise 18 

their impact and formulate adaptation strategies. Multi-disciplinary institutional 19 

capacity is needed to develop national analytical frameworks to provide sound 20 

practical guidelines for longer-term investment in food security related infrastructure 21 

for disaster mitigation at national level and for evolving livelihood adaptation 22 

strategies and risk management at local level. Climate-related insurance (e.g. Sakurai 23 

and Reardon, 1997; Skees et al., 2005) is one way of reducing exposure to risk at the 24 

local level.    25 

 26 

Equally important is the institutional capacity to address questions of transnational 27 

concerns, particularly in the context of climate variability and change, such as: (i) 28 

which set of neighbouring countries in Africa may constitute a natural and logistical 29 

cooperative unit for trade, food and economic security and development of renewable 30 

resources and with whom longer-term strategic collaborative alliance could be 31 

fostered in a globalizing world; and (ii) what kind of international investment and 32 

cooperation will be needed to promote a certain level of regional agricultural and rural 33 

development, to expand export markets within Africa, and to maximize 34 
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complementarities between nations and between regions in meeting future 1 

development needs?  Given that the impact of climate change will be felt at 2 

transnational scales and along internationally shared water basins, policy challenges 3 

including those dealing with climate change can be expected to become more acute 4 

and complex in the future as more and more nations attempt to reconcile national 5 

priorities with transnational and global priorities and opportunities. Strategic storage 6 

capacity for food and water would need transnational attention. 7 

 8 

For research and extension services, the complex social, economic and political 9 

implications of climate change are also of great importance, and multi-disciplinary 10 

thinking is key. One proposed development research framework for rural water 11 

management in the context of climate variability and change included: understanding 12 

vulnerability-livelihood interactions; establishing the legal, policy and institutional 13 

framework; and developing and testing a climate change adaptation strategy from a 14 

general framework from which specific goals and activities can be developed 15 

(Cooper, 2004). 16 

 17 

For the African research community, it is incumbent that a critical mass of 18 

disciplinary expertise in agroclimatology, hydrology, water management, climate, 19 

environmental physiology, agroecology, analytical agronomy, and systems 20 

development (including sociologists and anthropologists) is maintained to address 21 

livelihood related issues of crop, animal and system adaptability to climatic variability 22 

and climate change. Such a critical mass is not always present (see Washington et al., 23 

2004), and co-ordinated international research programmes can have a role in 24 

addressing this gap (e.g. African Multi-disciplinary Monsoon Analysis; 25 

http://amma.mediasfrance.org/). Coping strategies in communities invariably are 26 

dynamic integrated systems in space and time, deploying elements ranging from the 27 

cellular and seeds to crop and livestock mixtures to storage systems to various 28 

livelihood assets to sociocultural boundaries in resource access and use and safety 29 

nets (Bunting and Kassam, 1986; Harwood and Kassam, 2003; Cernea and Kassam, 30 

2005). These community level coping strategies need to be complemented by national 31 

level support and crisis response capacity.  Thus, understanding and researching 32 

coping strategies is a task that cannot simply be left in the hands of breeders, 33 

biotechnologists or conventional crop productionists and economists. 34 
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Agroclimatologists and agroecologists in particular are noted by their absence in 1 

strategic and applied biological and agricultural research in national and international 2 

agencies in Africa. One approach to strengthening climate related research capacity 3 

would be to embed some of the strategic capacity in the regional research 4 

organizations (de Janvry and Kassam, 2004) such as those in agriculture (e.g. 5 

CORAF, ASARECA, ARRINENA) and climate (see Washington et al., 2004, for a 6 

brief review of these institutions). This approach is particularly favourable given the 7 

importance of transnational implications of climate change to agriculture and water 8 

resource development.       9 

 10 

7.  Conclusions 11 

The IPCC (2001b) describes Africa, the world’s poorest region, as “the continent 12 

most vulnerable to the impacts of projected changes because poverty limits adaptation 13 

capabilities”. Agriculture plays a dominant role in supporting rural livelihoods and 14 

economic growth over much of Africa, given the preponderance of the poor who are 15 

rural and are dependent for the most part on agriculture. With the expected 16 

unprecedented increase in population in Africa during this century, agriculture is 17 

currently seen by many development experts including economists and policy makers 18 

as a sector that can make a significant contribution to the alleviation and mitigation of 19 

poverty in the medium term alongside the growth in non-agricultural sectors (Hazel 20 

and Haddad, 2001; Runge et al., 2003; Lipton, 2005 Conway, 1997; Cleaver, 1997). 21 

Although this view is contested (Bryceson et al., 2000; Collier, 2005) several 22 

countries in eastern and southern Africa have policies in place for the 23 

“modernization” or “revitalization” of agriculture as a central plank in poverty 24 

reduction strategies (Republic of Uganda, 2000; Republic of Zambia, 2002; Republic 25 

of Kenya, 2004). Endorsement of such aspirations comes from the Commission for 26 

Africa (2005), IAC (2004), IFAD (2000) and IFPRI (Hazell and Haddad, 2001) and 27 

also from the consortia of donors who are supporting these initiatives either through 28 

projects or budget support. These plans, particularly as they relate to poverty 29 

reduction, are predicated on the increasing integration of small-scale farmers into 30 

national and international markets, through increased productivity, quality and value-31 

added. Climate change will make it more difficult for these national and individual 32 

aspirations to be realized. 33 

 34 
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Tools to quantify the impacts of climate change on agriculture are a key part of the 1 

assessment of impacts on poverty. Assessments of the sensitivity of crops to climate 2 

variability and change using numerical climate models and crop simulation models 3 

are becoming increasingly skilful. Matching the spatial and temporal scales of crop 4 

and climate models remains an important research issue, with no solution yet to the 5 

provision of seamless assessments of crop productivity impacts across the continuum 6 

from field to district, country and region. The importance of sampling the full range of 7 

uncertainties in crop and climate predictions is also recognised. Advances in the 8 

underpinning science may well reduce these uncertainties, but the need to work with, 9 

and communicate, the implications of uncertainties in impact predictions to a range of 10 

stakeholders will remain. 11 

  12 

The high sensitivity of food crop systems in Africa to climate is exacerbated by 13 

additional constraints such as heavy disease burden, conflicts and political instability, 14 

debt burden and unfair international trade system. Consequently, Africa is being 15 

considered to be a special case for climate change (IPCC, 2001b) that according to 16 

major NGOs calls for a new test on every policy and project, in which the key 17 

question will be, “Are you increasing or decreasing people’s vulnerability to 18 

climate?” (NEF, 2005). One way of achieving this is to build capability in seasonal 19 

forecasting (Washington et al., 2006). The human response to seasonal forecasts can 20 

be simulated, allowing estimates of their impact at the village-level, and so increasing 21 

understanding of climate change adaptation strategies (e.g. Bharwani et al., 2005). 22 

Whatever the time scale considered, observation networks in both weather and 23 

agriculture (crop yield, planted area) are vital to the development and assessment of 24 

forecasting systems (Verdin et al., 2005; Haile, 2005; Washington et al., 2004). 25 

 26 

Increased support for small-scale agriculture and securing livelihoods at the local, 27 

household and community level, including strengthening adaptive strategies and 28 

resilience, requires complementary national level policy and institutional development 29 

to: identify climatic risks and vulnerabilities; and prepare for, and mitigate disasters at 30 

both community and national level (Haile 2005; Wasington et al., 2004). This should 31 

include community-based disaster management planning by local authorities, 32 

including through training activities and raising public awareness. 33 

 34 



 21 

There is evidence that farmers and farming systems can respond creatively and 1 

adaptively to environmental change (Section 5). Given that the first priority of any 2 

African farmer is to secure material and economic survival, adapting to climatic risks 3 

would be an instinctive livelihood response. As agriculture will remain an important 4 

economic activity at the local and national level for some time to come, it is important 5 

that governments put in place institutional and macro-economic conditions that 6 

support and facilitate adaptation. At the very least, in line with the recommendation of 7 

the Commission for Africa, climate change should be ‘mainstreamed’ within 8 

development policies, planning and activities by 2008. Given the current weakness in 9 

the institutional capacity of most African nations, this is indeed a tall order that will 10 

demand committed international support. 11 

12 
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Table 1. A selection of studies of the impact of climate change on crop yield in Africa. See also IPCC (2001b, Table 5-4). 1 

  2 

Region Crops Crop 

response tool 

Yield impact 

(%) 

Comments Reference 

Egypt Wheat 

rice 

maize 

Not specified -51 to -5 

-25 to -3 

-15 to –8 

Range from two doubled CO2 equilibrium 

scenarios and one transient run. 

Yates and Strzpeck 

(1998) 

Africa cereals FAO method 

with monthly 

data 

See comments For 29 countries: -35 M tons of potential 

cereal production. For 17 countries: +30M 

tons. 

Fischer et al. (2001) 

Zimbabwe maize CERES crop 

model 

-14 ; -12 Two doubled CO2 climate scenarios 

 

Smith et al. (1996) 

Zimbabwe maize CERES crop 

model 

-17 HadCM2 2040-2069 downscaled to 10 

min of arc by interpolation. 

Jones and Thornton 

(2003) 

Africa maize 

millet 

Various 

methods 

-98 to +16 

-79 to -14 

Range is across sites and climate 

scenarios. 

Reilly and 

Schimmelpfennig: 

(1999) 

Africa cereals Yield transfer 

functions 

-10 to +3 Range is across sites and climate 

scenarios. Includes adaptation. 

Parry et al. (1999) 

Africa maize Yield transfer 

functions 

‘falls by as 

much as 30%’ 

Similar methodology to Parry et al. (1999) Parry et al. (2004) 
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