Skip to main content
Log in

Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A hardwood bleached kraft pulp was oxidized by sodium hypochlorite using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and sodium bromide in water as catalysts to produce oxidized fibers. These oxidized fibers were mechanically disintegrated into oxidized nano-elements which were separated from the coarse components by centrifugation to obtain oxidized nanocellulose (ONC). The ONC was then coupled with fluorescent amino acids using a two step coupling procedure. First, the ONC was activated by N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino groups on the amino acids, forming an amide bond between the ONC and amino acids. The products (ONC-amino acids) were characterized by transmission electron microscopy and by different spectroscopic techniques such as absorption, emission, FTIR and XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed A, Adnot A, Granmaison JL, Kaliaguine S, Doucet J (1987) ESCA analysis of cellulosic materials. Cellulose Chem Technol 21:483–492

    CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Barry AO, Zoran Z (1990) Surface analysis by ESCA of sulfite post-treated CTMP. J Appl Polym Sci 39:31–42

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47:152–169

    Article  CAS  Google Scholar 

  • Chang PS, Robyt JF (1996) Oxidation of primary alcohol groups of naturally occurring polysacccharides with 2, 2, 6, 6-tetramethyl-1-piperidine oxoammonium ion. J Carbohydr Chem 15:819–830

    Article  CAS  Google Scholar 

  • Chanzy H (1990) Aspects of cellulose structure. In: Kennedy JF, Philips GO, William PA (eds) Cellulose sources and exploitation. Ellis Horwood Ltd., NY, pp 3–12

    Google Scholar 

  • Danishefsky I, Siskovic E (1971) Conversion of carboxyl groups of mucopolysaccharides into amides of amino acid esters. Carbohydr Res 16:199–205

    Article  CAS  Google Scholar 

  • de Nooy AE, Besemer AC, van Bekkum H (1995) Highly selective nitrosyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 69:89–98

    Google Scholar 

  • de Sousa Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Dorris GM, Gray DG (1978) The surface analysis of paper and wood fibers by ESCA. Cellulose Chem Technol 12:9–23

    CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65

    Article  CAS  Google Scholar 

  • Follain N, Montanari S, Jeacomine I, Gambarelli S, Vignon MR (2008) Coupling of amines with polyglucuronic acid: evidence for amide bond formation. Carbohydr Polym 74:333–343

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–805

    CAS  Google Scholar 

  • Hoare DG, Koshland DE Jr (1967) A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J Biol Chem 242:2447–2453

    CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164

    Article  CAS  Google Scholar 

  • Jansen RJJ, Van Bekkum H (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33:1021–1027

    Article  CAS  Google Scholar 

  • Jiang K, Schadler LS, Siegel RW, Zhang X, Zhang H, Terrones M (2004) Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 14:37–39

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022

    Article  CAS  Google Scholar 

  • Kamdem DP, Riedl B, Adnot A, Kaliaguine S (1991) ESCA spectroscopy of poly(methylmethacrylate) grafted onto wood fibers. J Appl Polym Sci 43:1901–1912

    Article  CAS  Google Scholar 

  • Kamdem DP, Zhang J, Adnot A (2001) Identification of cupric and cuprous copper in copper naphthenate-treated wood by X-ray photoelectron spectroscopy. Holzforschung 55:16–20

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    Article  CAS  Google Scholar 

  • Liu FPP, Rials TG, Simonsen J (1998) Relationship of wood surface energy to surface composition. Langmuir 14:536–541

    Article  CAS  Google Scholar 

  • Łojewska J, Miśkowiec P, Łojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Deg Stab 88:512–520

    Article  Google Scholar 

  • Montanari S, Roumani M, Heux L, Vignon M (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromol 38:1665–1671

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Muzzarelli C, Cosani A, Terbojevich M (1999) 6-Oxychitins, novel hyaluronan-like polysaccharides obtained by regioselective oxidation of chitins. Carbohydr Polym 39:361–367

    Google Scholar 

  • Nzokou P, Kamdem DP (2005) X-ray photoelectron spectroscopy study of red oak-(Quercus rubra), black cherry—(Prunus serotina) and red pine—(Pinus resinosa) extracted wood surfaces. Surf Interf Anal 37:689–694

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • Olmstead JA, Gray DG (1997) Fluorescence spectroscopy of cellulose, lignin and mechanical pulps: a review. J Pulp Pap Sci 23:J571–J581

    CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Rzayev J, Hillmyer MA (2005) Nanochannel array plastics with tailored surface chemistry. J Am Chem Soc 127:13373–13379

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190

    Article  CAS  Google Scholar 

  • Saito T, Shibata I, Isogai A, Suguri N, Sumikwa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61:414–419

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691

    Article  CAS  Google Scholar 

  • Sierakowski MR, Milas M, Desbrières J, Rinaudo M (2000) Specific modifications of galactomannans. Carbohydr Polym 42:51–57

    Article  CAS  Google Scholar 

  • Sugiyama J, Chanzy H, Revol JF (1994) On the polarity of cellulose in the cell wall of Valonia. Planta 193:260–265

    Article  CAS  Google Scholar 

  • Sun D, Zhou L, Wu Q, Yang S (2007) Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Tech Mater Sci Ed 22:677–680

    Article  CAS  Google Scholar 

  • Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterization of polyglucuronans. Cellulose 7:177–188

    Article  CAS  Google Scholar 

  • Toner SD, Plitt KF (1962) Spectrofluorometric studies of degraded cotton cellulose. Tappi J 45:681–688

    CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69:607–611

    Article  CAS  Google Scholar 

  • Zubavichus Y, Zharnikov M, Shaporenko A, Fuchs O, Weinhardt L, Heske C, Umbach E, Denlinger JD, Grunze M (2004) Soft X-ray induced decomposition of phenylalanine and tyrosine: a comparative study. J Phys Chem A 108:4557–4565

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work described herein was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Barazzouk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barazzouk, S., Daneault, C. Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids. Cellulose 18, 643–653 (2011). https://doi.org/10.1007/s10570-011-9503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9503-5

Keywords

Navigation