Skip to main content
Log in

Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This survey constitutes the second part of a comprehensive review, whose purpose is to provide a reasoned perspective on the field related to the preparation of new polysaccharide-based hydrophobic materials by scrutinizing the actual state of its art. After dealing with the major topic of cellulose hydrophobization in the first part, attention is now turned to the other important members of the polysaccharide families, namely hemicelluloses, chitin/chitosan, starch, pectin and alginates. Publications dealing with both chemical and physical treatments aimed at inducing a substantial increase in the hydrophobic character of their surface are critically examined within the broader context of the elaboration of novel materials based on renewable resources as a viable alternative to their fossil-based counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aburto J, Thiebaud S, Alric I, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1997) Properties of octanoated starch and its blends with polyethylene. Carbohydr Polym 34(1–2):101–112

    Article  CAS  Google Scholar 

  • Aburto J, Hamaili H, Baziard GM, Senocq F, Alric I, Borredon E (1999) Free-solvent synthesis and properties of higher fatty esters of starch—Part 2. Starch Starke 51(8–9):302–307

    Article  CAS  Google Scholar 

  • Amaral IF, Granja PL, Melo LV, Saramago B, Barbosa MA (2006) Functionalization of chitosan membranes through phosphorylation: atomic force microscopy, wettability, and cytotoxicity studies. J Appl Polym Sci 102(1):276–284

    Article  CAS  Google Scholar 

  • Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuel Bioprod Biorefin 3(3):329–343

    Article  CAS  Google Scholar 

  • Barikani M, Mohammadi M (2007) Synthesis and characterization of starch-modified polyurethane. Carbohydr Polym 68(4):773–780

    Article  CAS  Google Scholar 

  • Bastos DC, Santos AEF, Silva MLVJd, Simão RA (2009) Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy 109(8):1089–1093

    Article  CAS  Google Scholar 

  • Bhattarai N, Zhang M (2007) Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18(45):455601

    Article  CAS  Google Scholar 

  • Brownlee IA, Allen A, Pearson JP, Dettmar PW, Havler ME, Atherton MR, Onsøyen E (2005) Alginate as a source of dietary fiber. Crit Rev Food Sci 45(6):497–510

    Article  CAS  Google Scholar 

  • Bu H, Nguyen GTM, Kjøniksen A-L (2006) Effects of the quantity and structure of hydrophobes on the properties of hydrophobically modified alginates in aqueous solutions. Polym Bull 57(4):563–574

    Article  CAS  Google Scholar 

  • Carvalho AJF (2008) Starch: major sources, properties and applications as thermoplastic materials. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 321–342

  • Carvalho AJF, Curvelo AAS, Gandini A (2005) Surface chemical modification of thermoplastic starch: reactions with isocyanates, epoxy functions and stearoyl chloride. Ind Crop Prod 21:331–336

    Article  CAS  Google Scholar 

  • Chaa L, Joly N, Lequart V, Faugeron C, Mollet J-C, Martin P, Morvan H (2008) Isolation, characterization and valorization of hemicelluloses from Aristida pungens leaves as biomaterial. Carbohydr Polym 74(3):597–602

    Article  CAS  Google Scholar 

  • Chi H, Xu K, Xue D, Song C, Zhang W, Wang P (2007) Synthesis of dodecenyl succinic anhydride (DDSA) corn starch. Food Res Int 40:232–238

    Article  CAS  Google Scholar 

  • Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose (in press)

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interf Sci 316(2):360–366

    Article  CAS  Google Scholar 

  • Cunha AG, Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2008) What is the real value of chitosan’s surface energy? Biomacromolecules 9(2):610–614

    Article  CAS  Google Scholar 

  • Deng H-T, Wang J-J, Liu Z-Y, Ma M (2010) Influence of varying surface hydrophobicity of chitosan membranes on the adsorption and activity of lipase. J Appl Polym Sci 115(2):1168–1175

    Article  CAS  Google Scholar 

  • Desbrières J, Martinez C, Rinaudo M (1996) Hydrophobic derivatives of chitosan: characterization and rheological behaviour. Int J Biol Macromol 19(1):21–28

    Article  Google Scholar 

  • Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  CAS  Google Scholar 

  • Einbu A, Vårum KM (2008) Characterization of chitin and its hydrolysis to GlcNAc and GlcN. Biomacromolecules 9(7):1870–1875

    Article  CAS  Google Scholar 

  • Enescu D (2009) Polydimethylsiloxane modified chitosan IV. Preparation and characterization of porous hybrid membranes. J Macromol Sci A 46(4):438–446

    Article  CAS  Google Scholar 

  • Enescu D, Hamciuc V, Ardeleanu R, Cristea M, Ioanid A, Harabagiu V, Simionescu BC (2009) Polydimethylsiloxane modified chitosan. Part III: preparation and characterization of hybrid membranes. Carbohydr Polym 76(2):268–278

    Article  CAS  Google Scholar 

  • Fang JM, Sun RC, Fowler P, Tomkinson J, Hill CAS (1999) Esterification of wheat straw hemicelluloses in the N, N-dimethylformamide/lithium chloride homogeneous system. J Appl Polym Sci 74(9):2301–2311

    Article  CAS  Google Scholar 

  • Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  CAS  Google Scholar 

  • Feng L, Zhou Z, Dufresne A, Huang J, Wei M, An L (2009) Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J Appl Polym Sci 112(5):2830–2837

    Article  CAS  Google Scholar 

  • Fink K, Höhne S, Spange S, Simon F (2009) Hydrophobically functionalized chitosan particles. J Adhes Sci Technol 23(2):297–315

    Article  CAS  Google Scholar 

  • Fogg G (1944) Diurnal fluctuation in a physical property of leaf cuticle. Nature 154:515

    Article  Google Scholar 

  • Fredon E, Granet R, Zerrouki R, Krausz P, Saulnier L, Thibault JF, Rosier J, Petit C (2002) Hydrophobic films from maize bran hemicelluloses. Carbohydr Polym 49(1):1–12

    Article  CAS  Google Scholar 

  • Gandini A, Belgacem MN (2008) The state of the art. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 1–16

    Google Scholar 

  • Gao L, McCarthy TJ (2009) Wetting 101°. Langmuir 25(24):14105–14115

    Article  CAS  Google Scholar 

  • Gao L, McCarthy TJ, Zhang X (2009) Wetting and superhydrophobicity. Langmuir 25(24):14100–14104

    Article  CAS  Google Scholar 

  • Geng F, Chang PR, Yu J, Ma X (2010) The fabrication and the properties of pretreated corn starch laurate. Carbohydr Polym 80(2):361–366

    Article  CAS  Google Scholar 

  • Grondahl M, Gustafsson A, Gatenholm P (2006) Gas-phase surface fluorination of arabinoxylan films. Macromolecules 39(7):2718–2721

    Article  CAS  Google Scholar 

  • Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9(6):1493–1505

    Article  CAS  Google Scholar 

  • Hyde JF (1948) Method of rendering glass water repellent. US Patent 2439689:3

  • Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40(3):175–181

    Article  CAS  Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226

    Article  CAS  Google Scholar 

  • Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032

    Article  CAS  Google Scholar 

  • Li F, Liu WG, Yao KD (2002) Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour. Biomaterials 23(2):343–347

    Article  Google Scholar 

  • Li J, Gong Y, Zhao N, Zhang X (2005) Preparation of N-butyl chitosan and study of its physical and biological properties. J Appl Polym Sci 98(3):1016–1024

    Article  CAS  Google Scholar 

  • Li S, Xie H, Zhang S, Wang X (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 46:4857–4859

    Article  CAS  Google Scholar 

  • Liu WG, Li F, Zhao XD, Yao KD, Liu QG (2002) Atom force microscopic characterisation of the interaction forces between bovine serum albumin and cross-linked alkylated chitosan membranes in media of different pH. Polym Int 51(12):1459–1463

    Article  CAS  Google Scholar 

  • Liu LS, Fishman ML, Hicks KB (2007) Pectin in controlled drug delivery—a review. Cellulose 14(1):15–24

    Article  CAS  Google Scholar 

  • Ma Y, Jia Y-L, Shang Y-L, Liao F-H, Li J-R, Zhang S-H, Zhang O (2007) Crosslinked chitosan doped with Y2(CO3)3 and surface energy and electrorheological properties. J Appl Polym Sci 105(4):2427–2432

    Article  CAS  Google Scholar 

  • Moine C, Gloaguen V, Gloaguen J-M, Granet R, Krausz P (2004) Chemical valorization of forest and agricultural by-products. Obtention, chemical characteristics, and mechanical behavior of a novel family of hydrophobic films. J Environ Sci Health B 39(4):627–640

    Article  CAS  Google Scholar 

  • Nair KG, Dufresne A, Belgacem MN, Gandini A (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842

    Article  CAS  Google Scholar 

  • Namazi H, Dadkhah A (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr Polym 79(3):731–737

    Article  CAS  Google Scholar 

  • Peng F, Ren J-L, Peng B, Xu F, Sun R-C, Sun J-X (2008) Rapid homogeneous lauroylation of wheat straw hemicelluloses under mild conditions. Carbohydr Res 343(17):2956–2962

    Article  CAS  Google Scholar 

  • Peniche C, Monal WA, Goycoolea FM (2008) Chitin and chitosan: major sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 517–542

    Google Scholar 

  • Péroval C, Debeaufort F, Despré D, Voilley A (2002) Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. J Agric Food Chem 50(14):3977–3983

    Article  CAS  Google Scholar 

  • Péroval C, Debeaufort F, Seuvre A-M, Chevet B, Despré D, Voilley A (2003) Modified arabinoxylan-based films. Part B. Grafting of omega-3 fatty acids by oxygen plasma and electron beam irradiation. J Agric Food Chem 51(10):3120–3126

    Article  CAS  Google Scholar 

  • Péroval C, Debeaufort F, Seuvre A-M, Cayot P, Chevet B, Despré D, Voilley A (2004) Modified arabinoxylan-based films grafting of functional acrylates by oxygen plasma and electron beam irradiation. J Membr Sci 233(1–2):129–139

    Article  CAS  Google Scholar 

  • Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Progr Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  • Ralet M-C, Lerouge P, Quéméner B (2009) Mass spectrometry for pectin structure analysis. Carbohydr Res 344(14):1798–1807

    Article  CAS  Google Scholar 

  • Ramesh HP, Tharanathan RN (2003) Carbohydrates—the renewable raw materials of high biotechnological value. Crit Rev Biotechnol 23(2):149–173

    Article  CAS  Google Scholar 

  • Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28(21):1701–1712

    Article  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57(6):929–967

    Article  CAS  Google Scholar 

  • Rillosi M, Buckton G (1995) Modelling mucoadhesion by use of surface energy terms obtained from the Lewis acid-Lewis base approach. II. Studies on anionic, cationic, and unionisable polymers. Pharm Res 12(5):669–675

    Article  CAS  Google Scholar 

  • Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57(3):397–430

    Article  CAS  Google Scholar 

  • Round AN, Rigby NM, MacDougall AJ, Morris VJ (2010) A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr Res 345(4):487–497

    Article  CAS  Google Scholar 

  • Rutnakornpituk M, Ngamdee P, Phinyocheep P (2006) Preparation and properties of polydimethylsiloxane-modified chitosan. Carbohydr Polym 63(2):229–237

    Article  CAS  Google Scholar 

  • Sionkowska A, Kaczmarek H, Wisniewski M, Skopinska J, Lazare S, Tokarev V (2006) The influence of UV irradiation on the surface of chitosan films. Surf Sci 600(18):3775–3779

    Article  CAS  Google Scholar 

  • Smelcerovic A, Jugovic ZK, Petronijevic Z (2008) Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr Pharm Design 14(29):3168–3195

    Article  CAS  Google Scholar 

  • Song W, Gaware VS, Rúnarsson ÖV, Másson M, Mano JF (2010) Functionalized superhydrophobic biomimetic chitosan-based films. Carbohydr Polym 81(1):140–144

    Article  CAS  Google Scholar 

  • Spiridon I, Popa VI (2008) Hemicelluloses: major sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 289–304

    Google Scholar 

  • Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn Univ Int J 3(1–2):206–228

    Google Scholar 

  • Sun RC, Fang JM, Tomkinson J, Hill CAS (1999) Esterification of hemicelluloses from poplar chips in homogenous solution of N, N-dimethylformamide/lithium chloride. J Wood Chem Technol 19(4):287–306

    Article  CAS  Google Scholar 

  • Sun RC, Fang JM, Tomkinson J (2000) Stearoylation of hemicelluloses from wheat straw. Polym Degrad Stab 67(2):345–353

    Article  CAS  Google Scholar 

  • Sun RC, Fang JM, Tomkinson J, Geng ZC, Liu JC (2001) Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohydr Polym 44(1):29–39

    Article  CAS  Google Scholar 

  • Sun RC, Sun XF, Tomkinson J (2004) Hemicelluloses and their derivatives. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. American Chemical Society, Washington, pp 2–22

    Google Scholar 

  • Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38(8):644–652

    Article  CAS  Google Scholar 

  • Tahlawy KE, Venditti R, Pawlak J (2008) Effect of alkyl ketene dimer reacted starch on the properties of starch microcellular foam using a solvent exchange technique. Carbohydr Polym 73(1):133–142

    Article  CAS  Google Scholar 

  • Tangpasuthadol V, Pongchaisirikul N, Hoven VP (2003) Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydr Res 338(9):937–942

    Article  CAS  Google Scholar 

  • The DP, Péroval C, Debeaufort F, Despré D, Courthaudon JL, Voilley A (2002a) Arabinoxylan-lipids-based edible films and coatings. 2. Influence of sucroester nature on the emulsion structure and film properties. J Agric Food Chem 50(2):266–272

    Article  CAS  Google Scholar 

  • The DP, Debeaufort F, Péroval C, Despré D, Courthaudon JL, Voilley A (2002b) Arabinoxylan-lipid-based edible films and coatings. 3. Influence of drying temperature on film structure and functional properties. J Agric Food Chem 50(8):2423–2428

    Article  CAS  Google Scholar 

  • Thiebaud S, Aburto J, Alric I, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1997) Properties of fatty-acid esters of starch and their blends with LDPE. J Appl Polym Sci 65(4):705–721

    Article  CAS  Google Scholar 

  • Thielemans W, Belgacem MN, Dufresne A (2006) Starch nanocrystals with large chain surface modifications. Langmuir 22(10):4804–4810

    Article  CAS  Google Scholar 

  • Wong DWS, Gastineau FA, Gregorski KS, Tillin SJ, Pavlath AE (1992) Chitosan-lipid films: microstructure and surface energy. J Agric Food Chem 40(4):540–544

    Article  CAS  Google Scholar 

  • Xu QF, Wang JN, Smith IH, Sanderson KD (2009) Superhydrophobic and transparent coatings based on removable polymeric spheres. J Mater Chem 19(5):655–660

    Article  CAS  Google Scholar 

  • Yalpani M, Hall LD (1984) Some chemical and analytical aspects of polysaccharide modifications. 3. Formation of branched-chain, soluble chitosan derivatives. Macromolecules 17(3):272–281

    Article  CAS  Google Scholar 

  • Yamamoto H, Nishida A, Ohkawa K (1999) Wettability and adhesion of marine and related adhesive proteins. Colloid Surf A 149(1–3):553–559

    Article  CAS  Google Scholar 

  • Zhou J, Ren L, Tong J, Xie L, Liu Z (2009a) Surface esterification of corn starch films: reaction with dodecenyl succinic anhydride. Carbohydr Polym 78(4):888–893

    Article  CAS  Google Scholar 

  • Zhou J, Ren L, Tong J, Ma Y (2009b) Effect of surface esterification with octenyl succinic anhydride on hydrophilicity of corn starch films. J Appl Polym Sci 114(2):940–947

    Article  CAS  Google Scholar 

  • Zia KM, Barikani M, Zuber M, Bhatti IA, Barmar M (2009a) Surface characteristics of polyurethane elastomers based on chitin/1, 4-butane diol blends. Int J Biol Macromol 44(2):182–185

    Article  CAS  Google Scholar 

  • Zia KM, Zuber M, Barikani M, Bhatti IA, Khan MB (2009b) Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloid Surf B 72(2):248–252

    Article  CAS  Google Scholar 

  • Zouambia Y, Mostefa NM, Krea M (2009) Structural characterization and surface activity of hydrophobically functionalized extracted pectins. Carbohydr Polym 78(4):841–846

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Gandini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, A.G., Gandini, A. Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17, 1045–1065 (2010). https://doi.org/10.1007/s10570-010-9435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9435-5

Keywords

Navigation