Skip to main content
Log in

Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting “memory effect”

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Hydrotalcite-like compounds (HTlcs) can be used as the catalysts as it is since they contain various transition metal cations as the catalytically active species well dispersed on the basic support materials. Moreover, increasing numbers of the applications of HTlcs after the heat treatment have been found since the oxides with very small crystal size, stable to thermal treatments, are obtained after the calcination. The oxides possess interesting properties such as high surface area, basic properties and further form small and thermally stable metal crystallites by reduction. Moreover, the calcined oxides show a unique property, i.e., “memory effect,” which allows the reconstitution of the original hydrotalcite structure. We have developed the catalytic applications of hydrotalcites as it is and moreover the mixed oxides derived from hydrotalcites for various catalytic reactions, i.e., oxidation, dehydrogenation and reforming of hydrocarbons, and even for the reforming of methanol and the CO shift reaction. Aerobic oxidation of alcohols, Baeyer−Villiger oxidation of ketones and O3 oxidation of oxalic acid have been successfully carried out with the Mg−Al hydrotalcites containing Ni, Fe and Cu, respectively, as the catalysts in liquid phase. In the O3 oxidation of oxalic acid, the catalytic activity was enhanced by the “memory effect,” i.e., Mg(Cu)–Al hydrotaclite was reconstituted on the surface of Mg(Cu,Al)O periclase particles and oxalic acid was incorporated as anions in the hydrotalcite layer, resulting in an enhanced oxidation of oxalic acid. As the catalysts in the vapor phase reactions, Mg/Fe/Al mixed oxides prepared from Mg–Al(Fe) hydrotalcites and effectively catalyzed the dehydrogenation of ethylbenzene. Supported Ni metal catalysts have been prepared from Mg(Ni)–Al hydrotalcites and successfully used in the steam reforming and the oxidative reforming of methane and propane. Moreover, the Ni catalysts have been improved by combining a trace amount of noble metals by adopting the “memory effect” and used in the production of hydrogen for the PEFC under the daily startup and shutdown operation. Also starting from aurichalcite or hydrotalcite precursor as the precursor, Cu/Zn/Al catalysts with high Cu metal surface area have been prepared and successfully applied in the steam reforming of methanol and dimethyl ether, and moreover in the CO shift reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Scheme 1.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

Similar content being viewed by others

References

  1. Manasse E. (1915) Atti. Soc. Toscana Sci. Nat., Proc. Verb. 24: 92

    Google Scholar 

  2. Allmann R., Jepsen H.P. (1969) N. Jhb. Miner. Mh. 12: 544

    Google Scholar 

  3. Reichle W.T. (1986) Solid State Ionics 22: 135

    CAS  Google Scholar 

  4. Cavani F., Trifiro F., Vaccari A. (1991) Catal. Today 11: 173

    CAS  Google Scholar 

  5. Vaccari A. (1999) Appl. Clay Sci. 14: 161

    CAS  Google Scholar 

  6. Schmidt F. (2001) Appl. Catal. A 221: 15

    CAS  Google Scholar 

  7. Choudhary B.M., Kantam M.L., Rahman A., Reddy C.V., Rao K.K. (2001) Angew. Chem. Int. Ed. Engl. 40: 763

    Google Scholar 

  8. Kawabata T., Shinozuka Y., Ohishi Y., Shishido T., Takaki K., Takehira K. (2005) J. Mol. Catal. A 236: 206

    CAS  Google Scholar 

  9. Kawabata T., Fujisaki N., Shishido T., Nomura K., Sano T., Takehira K. (2006) J. Mol. Catal. A 253: 279

    CAS  Google Scholar 

  10. J.M. Fernández, Ulibarry M.A., Labajos F.M., Rives V. (1998) J. Mater. Chem. 8: 2507

    Google Scholar 

  11. Choudahry V.R., Indurkar J.R., Narkhede V.S., Jha R. (2004) J. Catal. 227: 257

    Google Scholar 

  12. Kaneda K., Yamaguchi K., Mori K., Mizugaki T., Ebitani K. (2000) Catal. Surv. Japan 4: 31

    CAS  Google Scholar 

  13. Motokura K., Mizugaki T., Ebitani K., Kaneda K. (2004) Tetrahedron Lett. 45: 6029

    CAS  Google Scholar 

  14. Shiraga M., Kawabata T., Li D., Shishido T., Komaguchi K., Sano T., Takehira K. (2006) Appl. Clay. Sci. 33: 247

    CAS  Google Scholar 

  15. Kannan S., Dubey A., Knozinger H. (2005) J. Catal. 231: 381

    CAS  Google Scholar 

  16. Roelofs J.C.A.A., Van Bockhoven J.A., Van Dillen A.J., Geus J.W., De Jong K.P. (2002) Chem. Eur. J. 8/24: 5571

    Google Scholar 

  17. Bish D.L., Brindley G.W. (1977) Am. Miner. 62: 458

    CAS  Google Scholar 

  18. Miyata S. (1975) Clays Clay Miner. 31: 305

    Google Scholar 

  19. Kahn A.L., O’Hare D. (2002) J. Mater. Chem. 12: 3191

    Google Scholar 

  20. Traversa E., Nunziante P., Chiozzini G. (1992) Thermochim. Acta 199: 25

    CAS  Google Scholar 

  21. Palomares A.E., Prato J.G., Rey F., Corma A. (2004) J. Catal. 221: 62

    CAS  Google Scholar 

  22. G.C. Araújo, Rangel M.C. (2000) Catal. Today 62: 201

    Google Scholar 

  23. Stobbe D.E., van Buren F.R., Stobbe-Kreemers A.W., van Dillen A.J., Geus J.W. (1991) J. Chem. Soc., Faraday Trans. 87: 1631

    CAS  Google Scholar 

  24. Oliveira A.C., Valentini A., Nobre P.S.S., Rangel M.C. (2002) React. Kinet. Ctal. Lett. 75:135

    CAS  Google Scholar 

  25. Carja G., Nakamura R., Aida T., Niiyama H. (2003) J. Catal. 218: 104

    CAS  Google Scholar 

  26. Ye X., Ma N., Hua W., Yue Y., Miao C., Xie Z., Gao Z. (2004) J. Mol. Catal. A 217: 103

    CAS  Google Scholar 

  27. Kuśtrowski P., Rafalska-Łasocha A., Majda D., Tomaszewska D., Djiembaj R (2001) Solid State Ionics 141–142: 237

    Google Scholar 

  28. Mimura N., Takahara I., Saito M., Sasaki Y., Murata K. (2002) Catal. Lett. 78: 125

    CAS  Google Scholar 

  29. Ohishi Y., Kawabata T., Shishido T., Takaki K., Zhang Q., Wang Y., Nomura K., Takehira K. (2005) Appl. Catal. A 288: 220

    CAS  Google Scholar 

  30. Crivello M., Pérez C., Herrero E., Ghione G., Casuscelli S., Rodoríguez-Castellón E. (2005) Catal. Today 107–108: 215

    Google Scholar 

  31. Takehira K. (2002) Catal. Survey Jpn. 6: 19

    CAS  Google Scholar 

  32. Shishido T., Sukenobu M., Morioka H., Furukawa R., Shirahase H., Takehira K. (2001) Catal. Lett. 73: 21

    CAS  Google Scholar 

  33. Shishido T., Sukenobu M., Morioka H., Kondo M., Wang Y., Takaki K., Takehira K. (2002) Appl. Catal. A 223: 35

    CAS  Google Scholar 

  34. T. Shishido, P. Wang, T. Kosaka and K. Takehira, Chem. Lett. (2002) 752

  35. Takehira K., Shishido T., Wang P., Kosaka T., Takaki K. (2003) Phys. Chem. Chem. Phys. 5: 3801

    CAS  Google Scholar 

  36. Takehira K., Shishido T., Wang P., Kosaka T., Takaki K. (2004) J. Catal. 221: 43

    CAS  Google Scholar 

  37. Morioka H., Shimidzu Y., Sukenobu M., Ito K., Tanabe E., Shishido T., Takehira K. (2001) Appl. Catal. A 215: 11

    CAS  Google Scholar 

  38. Ruckenstein E., Wang H.Y. (2000) Appl. Catal. A 198: 33

    CAS  Google Scholar 

  39. Miyata T., Shiraga M., Li D., Atake I., Shishido T., Oumi Y., Sano T., Takehira K. (2007) Catal. Commun. 8: 447

    CAS  Google Scholar 

  40. Takehira K., Kawabata T., Shishido T., Murakami K., Ohi T., Shoro D., Honda M., Takaki K. (2005) J. Catal. 231: 92

    CAS  Google Scholar 

  41. Takehira K., Shishido T., Shoro D., Murakami K., Honda M., Kawabata T., Takaki K. (2005) Appl. Catal. A 279: 41

    CAS  Google Scholar 

  42. Takehira K., Shishido T., Shoro D., Murakami K., Honda M., Kawabata T., Takaki K. (2004) Catal. Commun. 5: 209

    CAS  Google Scholar 

  43. Melo F., Morlanes N. (2005) Catal. Today 107–108: 458

    Google Scholar 

  44. A Olafsen, Slagtern Å., Dahl I.M., Olsbye U., Schuurman Y., Mirodatos C. (2005) J. Catal. 229: 163

    CAS  Google Scholar 

  45. Ohi T., Miyata T., Li D., Shishido T., Kawabata T., Sano T., Takehira K. (2006) Appl. Catal. A 308: 194

    CAS  Google Scholar 

  46. Eun J.H., Lee J.H., Kim S.G., Um M.Y., Park S.Y., Kim H.J. (2003) Thin Solid Films 435: 199

    CAS  Google Scholar 

  47. Basile F., Fornasari G., Gazzano M., Kiennemann A., Vaccari A. (2003) J. Catal. 217: 245

    CAS  Google Scholar 

  48. Basile F., Fornasari G., Rosetti V., F. Trifirò, Vaccari A. (2004) Catal. Today 91–92: 293

    Google Scholar 

  49. M. Miyata, A. Okada, Clays Clay Miner. 25 (1977) 14

    Google Scholar 

  50. Arpentinier P., Basile F., Del Gallo P., Fornasari G., Gary D., Rosetti V., Vaccari A. (2005) Catal. Today 99: 99

    CAS  Google Scholar 

  51. Basile F., Fornasari G., F. Trifirò, Vaccari A. (2002) Catal. Today 77: 215

    CAS  Google Scholar 

  52. Nagaoka K., Jentys A., Lercher J.A. (2005) J. Catal. 229: 185

    CAS  Google Scholar 

  53. Tsyganok A.I., Suzuki K., Hamakawa S., Takehira K., Hayakawa T. (2001) Catal. Lett. 77: 75

    CAS  Google Scholar 

  54. Tsyganok A.I., Tsunoda T., Hamakawa S., Suzuki K., Takehira K., Hayakawa T. (2003) J. Catal. 213: 191

    CAS  Google Scholar 

  55. Tsyganok A.I., Inaba M., Tsunoda T., Suzuki K., Takehira K., Hayakawa T. (2004) Appl. Catal. A 275: 149

    CAS  Google Scholar 

  56. Tsyganok A.I., Inaba M., Tsunoda T., Uchida K., Suzuki K., Takehira K., Hayakawa T. (2005) Appl. Catal. A 292: 328

    CAS  Google Scholar 

  57. Fonseca A., Assaf E.M. (2005) J. Power Sources 142: 154

    CAS  Google Scholar 

  58. Miyata T., Li D., Shiraga M., Shishido T., Oumi Y., Sano T., Takehira K. (2006) Appl. Catal. A 310: 97

    CAS  Google Scholar 

  59. Miyata T., Shiraga M., Li D., Atake I., Shishido T., Oumi Y., Sano T., Takehira K. (2007) Catal. Commun. 8: 447

    CAS  Google Scholar 

  60. K. Takehira, T. Ohi, T. Miyata, M. Shiraga and T. Sano, Top. Catal. in press

  61. Goetsch D.A., Schmidt L.D. (1996) Science 271: 1560

    CAS  Google Scholar 

  62. Bodke A.S., Bharadwaj S.S., Schmidt L.D. (1998) J. Catal. 179: 138

    CAS  Google Scholar 

  63. Ayabe S., Omoto H., Utaka T., Kikuchi R., Sasaki K., Teraoka Y., Eguchi K. (2003) Appl. Catal. A 241: 261

    CAS  Google Scholar 

  64. Aartun I., Gjervan T., Venvik H., O. Görke, Pfeifer P., Fathi M., Holmen A., Schubert K. (2004) Chem. Eng. J. 101: 93

    CAS  Google Scholar 

  65. Silberova B., Venvik H.J., Holmen A. (2005) Catal. Today 99: 69

    CAS  Google Scholar 

  66. Liu S., Xu L., Xie S., Wang Q., Xiong G. (2001) Appl. Catal. A 211: 145

    CAS  Google Scholar 

  67. Schulze K., Makowski W., R. Chyży, Dziembaj R., Geismar G. (2001) Appl. Clay Sci. 18: 59

    CAS  Google Scholar 

  68. Avci A.K., Trimm D.L., Aksoylu A.E., Önsan Z.İ. (2003) Catal. Lett. 88: 17

    CAS  Google Scholar 

  69. Avci A.K., Trimm D.L., Aksoylu A.E., Önsan Z.İ. (2004) Appl. Catal. A 258: 235

    CAS  Google Scholar 

  70. B.S. Çağlayan, Avci A.K., Z.İ. Önsan, Aksoylu A.E. (2005) Appl. Catal. A 280: 181

    Google Scholar 

  71. M. Shiraga, D. Li, I. Atake, T. Shishido, Y. Oumi, T. Sano and K. Takehira, Appl. Catal. A 318 (2007) 143

    CAS  Google Scholar 

  72. D. Li, M. Shiraga, I. Atake, T. Shishido, Y. Oumi, T. Sano and K. Takehira, Appl. Catal. A in press

  73. Dias J.A.C., Assaf J.M. (2004) J. Power Sources 130: 106

    CAS  Google Scholar 

  74. Dias J.A.C., Assaf J.M. (2005) J. Power Sources 139: 176

    CAS  Google Scholar 

  75. Madhavaram H., Idriss H., Wendt S., Kim Y.D., Knapp M., Over H., Aβmann J., E. Löffler, Muhler M. (2001) J. Catal. 202: 296

    CAS  Google Scholar 

  76. Balint I., Miyazaki A., Aika K. (2003) J. Catal. 220: 74

    CAS  Google Scholar 

  77. Yin S.-F., Zhang Q.-H., Xu B.-Q., Zhu W.-X., Ng C.-F., Au C.-T. (2004) J. Catal. 224: 384

    CAS  Google Scholar 

  78. Elmasides C., Kondarides D.I., W. Grünert, Verykios X.E. (1999) J. Phys. Chem. B 103: 99

    Google Scholar 

  79. Bartholomew C.H., Pannell R.B., Butler J.L. (1980) J. Catal. 65: 335

    CAS  Google Scholar 

  80. D. Li, I. Atake, T. Shishido, Y. Oumi, T. Sano and K. Takehira, to be published

  81. Li B., Kado S., Mukainakano Y., Miyazawa T., Miyao T., Naito S., Okumura K., Kunimori K., Tomishige K. (2007) J. Catal. 245: 144

    CAS  Google Scholar 

  82. Shishido T., Yamamoto Y., Morioka H., Takaki K., Takehira K. (2004) Appl. Catal. A 263: 249

    CAS  Google Scholar 

  83. T. Shishido, Y. Yamamoto, H. Morioka and K. Takehira, J. Mol. Catal. A in press

  84. Kawabata T., Matsuoka H., Shishido T., Li D., Tian Y., Sano T., Takehira K. (2006) Appl. Catal. A 308: 82

    CAS  Google Scholar 

  85. Shishido T., Yamamoto M., Li D., Tian Y., Morioka H., Honda M., Sano T., Takehira K. (2006) Appl. Catal. A 303: 62

    CAS  Google Scholar 

  86. Shishido T., Yamamoto M., Atake I., Li D., Tian Y., Morioka H., Honda M., Sano T., Takehira K. (2006) J. Mol. Catal. A 253: 270

    CAS  Google Scholar 

  87. Agrell J., Boutonnet M., Fierro J.L.G. (2003) Appl. Catal. A 253: 213

    CAS  Google Scholar 

  88. Peters R., H.G. Düsterwald, Höhlein B. (2000) J. Power Sources 86: 507

    CAS  Google Scholar 

  89. Shiozaki R., Hayakawa T., Ishii T., Kumagai M., Hamakawa S., Suzuki K., Ito T., Shishido T., Takehira K. (1999) Catal. Lett. 58: 131

    CAS  Google Scholar 

  90. Shishido T., Sameshima H., Takehira K. (2003) Top. Catal. 22: 261

    CAS  Google Scholar 

  91. Marjorie M.H., Kariuki B.M. (1994) Acta Crystallogr. B 50: 673

    Google Scholar 

  92. Ghose S. (1964) Acta Crystallogr. 17: 1051

    CAS  Google Scholar 

  93. Jambor J.L. (1964) Acta. Crystallogr. 17: 1051

    Google Scholar 

  94. Couves J.W., Thomas J.M., Waller D., Jones R.H., Dent A.J., Derbyshire G.E., Greaves G.N. (1991) Nature 354: 465

    CAS  Google Scholar 

  95. Stoilova D., Koleva V., Vassileva V. (2002) Spectrochim. Acta A 58: 2051

    CAS  Google Scholar 

  96. Murcia-Masacrós S., Navarro R.M., L. Gómez-Sainero, Constatino U., Nocchetti M., Fierro J.L.G. (2001) J. Catal. 198: 338

    Google Scholar 

  97. Takezawa N., Iwasa N. (1997) Catal. Today 36: 45

    CAS  Google Scholar 

  98. M.J.L. Ginés, Amadeo N., Laborde M., Apesteguía C.R. (1995) Appl. Catal. A 131: 283

    Google Scholar 

  99. Mastalir A., Frank B., Szizybalski A., Soerijanto H., Deshpande A., Niederberger M., R. Schomäcker, R. Schlögl, Ressler T. (2005) J. Catal. 230: 464

    CAS  Google Scholar 

  100. Batista J., Pintar A., Mandrino D., Jenko M., Martin V. (2001) Appl. Catal. A 206: 113

    CAS  Google Scholar 

  101. Tanaka Y., Kikuchi R., Takeguchi T., Eguchi K. (2005) Appl. Catal. B 57: 211

    CAS  Google Scholar 

  102. Pokrovsky O.S., Schott J. (2004) Geochim. Cosmochim. Acta 68: 31

    CAS  Google Scholar 

  103. Ovesen C.V., Clausen B.S., B.S. Hammershøi, Steffensen G., Askgaard T., Chorkendorff I., J.K. Nørskov, Rasmussen P.B., Stolze P., Taylor P. (1996) J. Catal. 158: 170

    CAS  Google Scholar 

  104. Fujita S.-I., Usui M., Takezawa N. (1992) J. Catal. 134: 220

    CAS  Google Scholar 

  105. Koryabkina N.A., Phatak A.A., Ruettinger W.F., Farrauto R.J., Ribeiro F.H. (2003) J. Catal. 217: 233

    CAS  Google Scholar 

  106. Jakdetchai O., Nakajima T. (2002) J. Mol. Struct. 619: 51

    Article  CAS  Google Scholar 

  107. Turco M., Bagnasco G., Constantino U., Marmottini F., Montanari T., Ramis G., Busca G. (2004) J. Catal. 228: 43

    CAS  Google Scholar 

  108. Ovesen C.V., Stolze P., J.K. Nørskov, Campbell C.T. (1992) J. Catal. 134: 445

    CAS  Google Scholar 

  109. Turco M., Bagnasco G., Costantino U., Marmottini F., Montanari T., Ramis G., Busca G. (2004) J. Catal. 228: 56

    CAS  Google Scholar 

  110. Constantino U., Marmottini F., Sisani M., Montanari T., Raims G., Busca G., Turco M., Bagnasco G. (2005) Solid State Ionics 176: 2917

    Google Scholar 

  111. Busaca G., Constatino U., Marmottini F., Montanari T., Patrono P., Pinzari F., Ramis G. (2006) Appl. Catal. A 310: 70

    Google Scholar 

  112. Velu S., Suzuki K., Vijayaraj M., Barman S., Gopinath C.S. (2005) Appl. Catal. B 55: 287

    CAS  Google Scholar 

  113. Lenarda M., Storaro L., Frattini R., Casagrande M., Marchiori M., Capannelli G., Uliana C., Ferrari F., Ganzerla R. (2007) Catal. Commun. 8: 467

    CAS  Google Scholar 

  114. Melián-Cabrera I., López Granadoz M., Fierro J.L.G. (2002) J. Catal. 210: 273

    Google Scholar 

  115. I. Atake, K. Nishida, D. Li, Y. Oumi, T. Shishido, T. Sano and K. Takehira, to be published

Download references

Acknowledgments

The authors are very grateful to Dr. T. Kawabata of Sumitomo Chem. Co., Japan, and Dr. A. I. Tsyganok of the University of Alberta, Canada, for their helpful collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Takehira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takehira, K., Shishido, T. Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting “memory effect”. Catal Surv Asia 11, 1–30 (2007). https://doi.org/10.1007/s10563-007-9016-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-007-9016-2

Keywords

Navigation