Skip to main content
Log in

Mechanistic and Adsorption Studies of Relevance to Photocatalysts on Titanium Grafted Mesoporous Silicalites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ti-SBA-15 and Ti-MCM-41 were synthesized and evaluated as possible photocatalysts for the reduction of CO2, and for the photo-Kolbe decomposition of acetic acid. UV-Raman was used to study the adsorption of carbon dioxide, water, formic acid, and acetic acid over Ti-MCM-41 by monitoring the UV enhanced resonance peak of the totally symmetric stretching band of the grafted Ti species at 1,085 cm−1. Acetic and formic acid dissociate on Ti-SBA-15 and Ti-MCM-41 to form acetate and formate, respectively. The conjugate bases subsequently interact strongly with Ti sites. Water interacts with the Ti sites, while no change in the amplitude of the 1,085 cm−1 band is observed in the presence of CO2. Photocatalysis experiments indicate that these mesoporous silicalites are active in the photo-Kolbe decomposition of acetic acid. CO2 is formed by reaction of a hole with the acetate carboxylate groups. The methyl radical co-products react with a surface proton and an electron to form methane. No products resulting from the dimerization of methyl radicals are observed, presumably because of the highly dispersed active sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Indrakanti VP, Kubicki JD, Schobert HH (2009) Energy Environ Sci 2:745

    Article  CAS  Google Scholar 

  2. Hemminger JC, Carr R, Somorjai GA (1978) Chem Phys Lett 57:100

    Article  CAS  Google Scholar 

  3. Aurian-Blanjen B, Halmann M, Manassen J (1980) Sol Energy 25:165

    Article  Google Scholar 

  4. Inoue T, Fujishima A, Konishi S et al (1979) Nature 277:637

    Article  CAS  Google Scholar 

  5. Ulman M, Tinnemans AHA, Halmann M (1982) Int J Solar Energy 1:213

    CAS  Google Scholar 

  6. Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:2239

    Article  CAS  Google Scholar 

  7. Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:5985

    Article  CAS  Google Scholar 

  8. Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  9. Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Ed 44:6456

    Article  CAS  Google Scholar 

  10. Ratnasamy P (2004) Adv Catal 48:1

    Article  CAS  Google Scholar 

  11. Anpo M (1998) Catal Today 44:327

    Article  CAS  Google Scholar 

  12. Hwang JS, Chang JS, Park SE et al (2004) Stud Surf Sci Catal 153:299

    Article  CAS  Google Scholar 

  13. Ikeue K, Yamashita H, Anpo M (2002) Electrochemistry 70:402

    CAS  Google Scholar 

  14. Ulagappan N (2000) J Phys Chem A 104:7834

    Article  CAS  Google Scholar 

  15. Lin WY, Frei H (2002) J Am Chem Soc 124:9292

    Article  CAS  Google Scholar 

  16. Hu Y, Wada N, Tsujimaru K et al (2007) Catal Today 120:139

    Article  CAS  Google Scholar 

  17. Hwang JS, Chang JS, Park SE et al (2005) Top Catal 35:311

    Article  CAS  Google Scholar 

  18. Lin W, Han H, Frei H (2004) J Phys Chem B 108:18269

    Article  CAS  Google Scholar 

  19. Lin WY, Cai Q, Pang WQ et al (1999) Microporous Mesoporous Mater 33:187

    Article  CAS  Google Scholar 

  20. Hicks JC, Dabestani R, Buchanan AC et al (2006) Chem Mater 18:5022

    Article  CAS  Google Scholar 

  21. Maschmeyer T, Rey F, Sankar G et al (1995) Nature 378:159

    Article  CAS  Google Scholar 

  22. Tozzola G, Mantegazza MA, Ranghino G et al (1998) J Catal 179:64

    Article  CAS  Google Scholar 

  23. Ricchiardi G, Damin A, Bordiga S et al (2001) J Am Chem Soc 123:11409

    Article  CAS  Google Scholar 

  24. Li C, Stair PC (1996) 11th international congress on catalysis—40th Anniversary, Pts a and B 101:881

  25. Stair PC, Li C (1997) J Vac Sci Technol A 15:1679

    Article  CAS  Google Scholar 

  26. Chua YT, Stair PC (2000) J Catal 196:66

    Article  CAS  Google Scholar 

  27. Chua YT, Stair PC, Wachs IE (2001) J Phys Chem B 105:8600

    Article  CAS  Google Scholar 

  28. Stair PC (1998) Abstr Pap Am Chem Soc 215:U474

    Google Scholar 

  29. Socrates G (1980) Infrared characteristic group frequencies. A Wiley-Interscience Publication, New York

    Google Scholar 

  30. Chen MT, Lin YS, Lin YF et al (2004) J Catal 228:259

    Article  CAS  Google Scholar 

  31. Herzberg G (1945) Infrared and Raman spectra. Van Nostrand, New York

    Google Scholar 

  32. Glisenti A (1998) Chem Soc Faraday Trans 94:3671

    Article  CAS  Google Scholar 

  33. Gaufres R, Maillols J, Tabacik V (1981) J Raman Spectrosc 11:442

    Article  CAS  Google Scholar 

  34. Zecchina A, Bordiga S, Lamberti C et al (1996) Catal Today 32:97

    Article  CAS  Google Scholar 

  35. Bordiga S, Damin A, Bonino F et al (2003) Phys Chem Chem Phys 5:4390

    Article  CAS  Google Scholar 

  36. Lange NA, Dean JA (1973) Lange’s handbook of chemistry, 11th edn. McGraw-Hill, New York

  37. Deluzarche A, Hindermann JP, Kieffer R et al (1985) Rev Chem Intermed 6:255

    Article  CAS  Google Scholar 

  38. Ohsawa T, Lyubinetsky IV, Henderson MA et al (2008) J Phys Chem C 112:20050

    Article  CAS  Google Scholar 

  39. White JM, Szanyi J, Henderson MA (2004) J Phys Chem B 108:3592

    Article  CAS  Google Scholar 

  40. Yang CC, Yu YH, van der Linden B et al (2010) J Am Chem Soc 132:8398

    Article  CAS  Google Scholar 

  41. Wang QF, Wang L, Chen JX et al (2007) J Mol Catal A Chem 273:73

    Article  CAS  Google Scholar 

  42. Thiele GF, Roland E (1997) J Mol Catal A Chem 117:351

    Article  CAS  Google Scholar 

  43. Fox MA, Dulay MT (1993) Chem Rev 93:341

    Article  CAS  Google Scholar 

  44. Lin W, Frei H (2005) JACS Commun 127:1610

    Article  CAS  Google Scholar 

  45. Green J, Carter E, Murphy DM (2009) Chem Phys Lett 477:340

    Article  CAS  Google Scholar 

  46. Wilson JN, Senanayake SD, Idriss H (2004) Surf Sci 562:L231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Award DE-FG02-03-ER15457). This work made use of the J. B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-0520513) at the Materials Research Center of Northwestern University. The electron imaging and diffraction work was performed in the EPIC facility of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Danon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danon, A., Stair, P.C. & Weitz, E. Mechanistic and Adsorption Studies of Relevance to Photocatalysts on Titanium Grafted Mesoporous Silicalites. Catal Lett 141, 1057–1066 (2011). https://doi.org/10.1007/s10562-011-0644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0644-9

Keywords

Navigation