Skip to main content
Log in

Isotope Effects in Methanol Synthesis and the Reactivity of Copper Formates on a Cu/SiO2 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Here we investigate isotope effects on the catalytic methanol synthesis reaction and the reactivity of copper-bound formate species in CO2–H2 atmospheres on Cu/SiO2 catalysts by simultaneous IR and MS measurements, both steady-state and transient. Studies of isotopic variants (H/D, 12C/13C) reveal that bidentate formate dominates the copper surface at steady state. The steady-state formate coverages of HCOO (in 6 bar 3:1 H2:CO2) and DCOO (in D2:CO2) are similar and the steady-state formate coverages in both systems decrease by ~80% from 350 K to 550 K. Over the temperature range 413 K–553 K, the steady-state methanol synthesis rate shows a weak H/D isotope effect (1.05 ± 0.05) with somewhat higher activation energies in H2:CO2 (79 kJ/mole) than D2:CO2 (71 kJ/mole) over the range 473 K–553 K. The reverse water gas shift (RWGS) rates are higher than methanol synthesis and also shows a weak positive H/D isotope effect with higher activation energy for H2/CO2 than D2/CO2 (108 vs. and 102 kJ/mole) The reactivity of the resulting formate species in 6 bar H2, 6 bar D2 and 6 bar Ar is strongly dominated by decomposition back to CO2 and H2. H2 and D2 exposure compared to Ar do not enhance the formate decomposition rate. The decomposition profiles on the supported catalyst deviate from first order decay, indicating distributed surface reactivity. The average decomposition rates are similar to values previously reported on single crystals. The average activation energies for formate decomposition are 90 ± 17 kJ/mole for HCOO and 119 ± 11 kJ/mole for DCOO. By contrast to the catalytic reaction rates, the formate decomposition rate shows a strong H/D kinetic isotope effect (H/D ~8 at 413 K), similar to previously observed values on Cu(110).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC (1988) Appl Catal 36:1

    Article  CAS  Google Scholar 

  2. Askgaard TS, Nørskov JK, Ovesen CV, Stolze P (1995) J Catal 156:229

    Article  CAS  Google Scholar 

  3. Fiolitakis E, Hofmann H (1983) J Catal 80:328

    Article  CAS  Google Scholar 

  4. Choi Y, Stenger HG (2003) J Power Sources 124:432

    Article  CAS  Google Scholar 

  5. Schumacher N, Boisen A, Dahl S, Gokhale AA, Kandoi S, Grabow LC, Dumesic JA, Mavrikakis M, Chorkendorff I (2005) J Catal 229:265

    Article  CAS  Google Scholar 

  6. Ovesen CV, Stoltze P, Norskov JK, Campbell CT (1992) J Catal 134:445

    Article  CAS  Google Scholar 

  7. Ernst K-H, Campbell CT, Moretti G (1992) J Catal 134:66

    Article  CAS  Google Scholar 

  8. Avastuy JL, Gutierrez-Ortiz MA, Gonzalez-Marcos JA, Aranzabal A, Gonzalez-Velasco JR (2005) Ind Eng Chem Res 44(1):41

    Article  Google Scholar 

  9. Kusar H, Hocevar S, Levec J (2006) Appl Catal B-Environ 63(3–4):194

    Article  CAS  Google Scholar 

  10. Qi XM, Flytzani-Stephanopoulos M (2004) Ind Eng Chem Res 43(12):3055

    Article  CAS  Google Scholar 

  11. Chorkendorff I, Taylor PA, Rasmussen PB (1992) J Vac Sci Technol A 10:2277

    Article  CAS  Google Scholar 

  12. Wachs IE, Madix R (1978) J Catal 53:208

    Article  CAS  Google Scholar 

  13. Russell JN Jr, Gates SM, Yates JT Jr (1985) Surf Sci 163:516

    Article  CAS  Google Scholar 

  14. Taylor PA, Rusmussen PB, Ovesen CV, Stoltze P, Chorkendorff I (1992) Surf Sci 261:191

    Article  CAS  Google Scholar 

  15. Nerlov J, Chorkendorff I (1999) J Catal 181:271

    Article  CAS  Google Scholar 

  16. Yatsu T, Nishimura H, Fujitani T, Nakamura J (2000) J Catal 191:423

    Article  CAS  Google Scholar 

  17. Nakano H, Nakamura I, Fujitani T, Nakamura J (2001) J Phys Chem B 105:1355

    Article  CAS  Google Scholar 

  18. Nakamura I, Nakano H, Fijitani T, Uchijima T, Nakamura J (1999) J Vac Sci Technol A 17:1592

    Article  CAS  Google Scholar 

  19. Sexton BA (1979) Surf Sci 88:319

    Article  CAS  Google Scholar 

  20. Sexton BA, Hughes AE, Avery NR (1985) Surf Sci 155:366

    Article  CAS  Google Scholar 

  21. Bowker M, Haq S, Holroyd R, Parlett PM, Poulston S, Richardson N (1996) J Chem Soc Faraday Trans 92:4683

    Article  CAS  Google Scholar 

  22. Appel L, Eon JG, Schmal M (1998) Catal Lett 56:199

    Article  CAS  Google Scholar 

  23. Goguet A, Meunier F, Breen JP, Burch R, Petch MI, Faur Ghenciu A (2004) J Catal 226:382

    Article  CAS  Google Scholar 

  24. Meunier FC, Tibiletti D, Goguet A, Reid D, Burch R (2005) Appl Catal A: Gen 289:104

    Article  CAS  Google Scholar 

  25. Meunier FC, Reid D, Goguet A, Shekhtman S, Hardacre C, Burch R, Deng W, Flytzani-Stephanopoulos M (2007) J Catal 247:277

    Article  CAS  Google Scholar 

  26. Kuroda Y, Kubo M (1967) Spectrchimi Acta A 23:2779

    Article  CAS  Google Scholar 

  27. Ito K, Bernstein H (1956) Can J Chem 34:170

    Article  CAS  Google Scholar 

  28. Jones TS, Ashton R, Richardson NV (1989) J Chem Phys 90:7564

    Article  CAS  Google Scholar 

  29. Clarke D, Lee D-K, Sandoval MJ, Bell AT (1994) J Catal 150:81

    Article  CAS  Google Scholar 

  30. Millar GJ, Rochester CH, Waugh K (1991) J Chem Soc Faraday Trans 87:1491

    Article  CAS  Google Scholar 

  31. Sakata Y, Domen K, Maruya K, Onishi T (1988–1989) Appl Surf Sci 35:363

  32. Luys M-J, van Oeffelt PH, Pieters P, Ter Veen R (1991) Catal Today 10:283

    Article  CAS  Google Scholar 

  33. Luys MJ, van Oeffelt PH, Brouwer WGJ, Pijpers AP, Scholten JJF (1989) Appl Catal 46:161

    Article  CAS  Google Scholar 

  34. Yang Y, Disselkamp RS, Campbell CT, Szanyi J, Peden CHF, Goodwin JG Jr (2006) Rev Sci Instrum 77:094104

    Google Scholar 

  35. Millar GJ, Rochester CH, Waugh KC (1991) J Chem Soc Faraday Trans 87:2785

    Article  CAS  Google Scholar 

  36. Millar GJ, Rochester CH, Waugh KC (1991) J Chem Soc Faraday Trans 87:2795

    Article  CAS  Google Scholar 

  37. Denkwitz Y, Karpenko A, Plzak V, Leppelt R, Schumacher B, Behm RJ (2007) J Catal 246:74

    Article  CAS  Google Scholar 

  38. Taylor PA, Rasmussen PB, Chorkendorff I (1991) J Phys Condens Matter 3:S59

    Article  CAS  Google Scholar 

  39. Millar GJ, Rochester CH, Waugh KC (1992) Catal Lett 14:289

    Article  CAS  Google Scholar 

  40. Greenler RG (1962) J Chem Phys 37:2094

    Article  CAS  Google Scholar 

  41. Herzberg G (1945) Infrared and polyatomic molecules. D Van Nostrand Company, Inc., Princeton, p 169

    Google Scholar 

  42. Robbins JL, Iglesia E, Kelkar CP, DeRites B (1991) Catal Lett 10:1

    Article  CAS  Google Scholar 

  43. Yoshihara J, Campbell CT (1996) J Catal 161:776

    Article  CAS  Google Scholar 

  44. Yoshihara J, Campbell CT (1998) Surf Sci 407:256

    Article  CAS  Google Scholar 

  45. Madix RJ, Telford SG (1992) Surf Sci 277:246

    Article  CAS  Google Scholar 

  46. Taylor PA, Rasmussen PB, Chorkendorff I (1995) J Chem Soc Faraday Trans 91:1267

    Article  CAS  Google Scholar 

  47. Gardiner WC (1972) Rates and mechanisms of chemical reactions. W.A. Benjamin, Inc., Menlo Park

    Google Scholar 

  48. Gokhale AA, James Dumesic A, Mavrikakis M (2008) J Amer Chem Soc 130:1402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was performed at the Institute for Interfacial Catalysis (ICC) at Pacific Northwest National Laboratory (PNNL), and funded by a Laboratory Directed Research and Development (LDRD) grant as part of the Catalysis Initiative program administered by PNNL. The work was carried out in the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, a National Scientific User facility supported by the US Department of Energy Office of Biological and Environmental Research. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy. CTC would like to acknowledge the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division grant number DE-FG02-96ER14630, for support of this work. CAM gratefully acknowledges PNNL support for his participation as visiting professor during the summer of 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Mims.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Mims, C.A., Disselkamp, R.S. et al. Isotope Effects in Methanol Synthesis and the Reactivity of Copper Formates on a Cu/SiO2 Catalyst. Catal Lett 125, 201–208 (2008). https://doi.org/10.1007/s10562-008-9592-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9592-4

Keywords

Navigation