Skip to main content
Log in

Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microencapsulation of genetically engineered cells has attracted much attention as an alternative nonviral strategy to gene therapy. Though smaller microcapsules (i.e. less than 300 μm) theoretically have various advantages, technical limitations made it difficult to prove this notion. We have developed a novel microfabricated device, namely a micro-airflow-nozzle (MAN), to produce 100 to 300 μm alginate microcapsules with a narrow size distribution. The MAN is composed of a nozzle with a 60 μm internal diameter for an alginate solution channel and airflow channels next to the nozzle. An alginate solution extruded through the nozzle was sheared by the airflow. The resulting alginate droplets fell directly into a CaCl2 solution, and calcium alginate beads were formed. The device enabled us to successfully encapsulate living cells into 150 μm microcapsules, as well as control microcapsule size by simply changing the airflow rate. The encapsulated cells had a higher growth rate and greater secretion activity of marker protein in 150 μm microcapsules compared to larger microcapsules prepared by conventional methods because of their high diffusion efficiency and effective scaffold surface area. The advantages of smaller microcapsules offer new prospects for the advancement of microencapsulation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • D.R. Albrecht, V.L. Tsang, R.L. Sah, and S.N. Bhatia, Lab Chip 5, 111 (2005).

    Article  Google Scholar 

  • H. R. Brandenberger and F. Widmer, Biotechnol. Prog. 15, 366 (1999).

    Article  Google Scholar 

  • B. Bugarski, Q.L. Li, M.F.A. Goosen, D. Poncelet, R.J. Neufeld, and Vunjakg, AIChE J. 40, 1026 (1994).

    Article  Google Scholar 

  • D. Chicheportiche and G. Reach, Diabetologia 31, 54 (1988).

    Google Scholar 

  • P. Cirone, J.M. Bourgeois, and P.L. Chang, Hum. Gene Ther. 14, 1065 (2003).

    Article  Google Scholar 

  • C. Dulieu, D. Poncelet, and R.J. Neufeld, in Encapsulation and Immobilization Techniques, edited by W.M. Kuhtreiber, R.P. Lanza and W.L. Chick (Birkhauser, Boston, 1999), p. 3.

  • G. Hortelano, A. AlHendy, F.A. Ofosu, and P.L. Chang, Blood 87, 5095 (1996).

    Google Scholar 

  • T. Joki, M. Machluf, A. Atala, J.H. Zhu, N.T. Seyfried, I.F. Dunn, T. Abe, R.S. Carroll, and P.M. Black, Nat. Biotechnol. 19, 35 (2001).

    Article  Google Scholar 

  • T. Kawakatsu, Y. Kikuchi, and M. Nakajima, J. Am. Oil Chem. Soc. 74, 317 (1997).

    Article  Google Scholar 

  • I. Kobayashi, M. Nakajima, K. Chun, Y. Kikuchi, and H. Fukita, AIChE J. 48, 1639 (2002).

    Article  Google Scholar 

  • K. Kuba, K. Matsumoto, K. Date, H. Shimura, M. Tanaka, and T. Nakamura, Cancer Res. 60, 6737 (2000).

    Google Scholar 

  • T. Kushibiki, K. Matsumoto, T. Nakamura, and Y. Tabata, Gene Ther. 11, 1205 (2004).

    Article  Google Scholar 

  • F.A. Leblond, G. Simard, N. Henley, B. Rocheleau, P.M. Huet, and J.P. Halle, Cell Transplant. 8, 327 (1999).

    Google Scholar 

  • F. Lim and A. M. Sun, Science 210, 908 (1980).

    Article  Google Scholar 

  • V.A. Liu and S.N. Bhatia, Biomed. Microdev. 4, 257 (2002).

    Article  Google Scholar 

  • K. Matsumoto and T. Nakamura, Cancer Sci. 94, 321 (2003).

    Article  Google Scholar 

  • R. Nir, R. Lamed, L. Gueta, and E. Sahar, Appl. Environ. Microbiol. 56, 2870 (1990).

    Google Scholar 

  • T. Nisisako, T. Torii, and T. Higuchi, Lab Chip 2, 24 (2002).

    Article  Google Scholar 

  • H. Niwa, K. Yamamura, and J. Miyazaki, Gene 108, 193 (1991).

    Article  Google Scholar 

  • T.A. Read, D.R. Sorensen, R. Mahesparan, P.O. Enger, R. Timpl, B.R. Olsen, M.H.B. Hjelstuen, O. Haraldseth, and R. Bjerkvig, Nat. Biotechnol. 19, 29 (2001).

    Article  Google Scholar 

  • R. Robitaille, J.F. Pariseau, F.A. Leblond, M. Lamoureux, Y. Lepage, and J.P. Halle, J. Biomed. Mater. Res. 44, 116 (1999).

    Article  Google Scholar 

  • C.J.D. Ross and P.L. Chang, J. Biomater. Sci. Polym. Ed. 13, 953 (2002).

    Article  Google Scholar 

  • J. Schrezenmeir, L. Gero, C. Laue, J. Kirchgessner, A. Muller, A. Huls, R. Passmann, H.J. Hahn, L. Kunz, W. Mueller-Klieser, and et al., Transplant. Proc. 24, 2925 (1992).

    Google Scholar 

  • S. Sugiura, M. Nakajima, S. Iwamoto, and M. Seki, Langmuir 17, 5562 (2001).

    Article  Google Scholar 

  • S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, and M. Nakajima, Biomaterials 26, 3327 (2005).

    Article  Google Scholar 

  • D. Tomioka, N. Maehara, K. Kuba, K. Mizumoto, M. Tanaka, K. Matsumoto, and T. Nakamura, Cancer Res. 61, 7518 (2001).

    Google Scholar 

  • J.M. Van Raamsdonk and P. L. Chang, J. Biomed. Mater. Res. 54, 264 (2001).

    Article  Google Scholar 

  • T. Visted, T. Furmanek, P. Sakariassen, W.B. Foegler, K. Sim, H. Westphal, R. Bjerkvig, and M. Lund-Johansen, Hum. Gene Ther. 14, 1429 (2003).

    Article  Google Scholar 

  • T. Wang, I. Lacik, M. Brissova, A.V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A.C. Powers, Nat. Biotechnol. 15, 358 (1997).

    Article  Google Scholar 

  • J. Wen, K. Matsumoto, N. Taniura, D. Tomioka, and T. Nakamura, Cancer Gene Ther. 11, 419 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. Y. Sando for helping with fabrication of the silicon plate. We also thank Kimica Corp. (Tokyo, Japan) for providing sodium alginate. This work was supported by the Nanotechnology Project, Ministry of Agriculture, Forestry and Fisheries, and the Program for Promotion of Fundamental Studies in Health Sciences of the Organization for Pharmaceutical Safety and Research of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Nakajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiura, S., Oda, T., Aoyagi, Y. et al. Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules. Biomed Microdevices 9, 91–99 (2007). https://doi.org/10.1007/s10544-006-9011-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9011-9

Keywords

Navigation