Skip to main content

Advertisement

Log in

Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cancer is one of the most common diseases afflicting humans. The use of biomarkers specific for tumor cells has facilitated their identification. However, technology has not kept pace with the field of molecular biomarkers, leaving their potential unrealized. Here, we demonstrate the efficacy of recognizing and capturing cancer cells using an antibody-based, on-chip, microfluidic device. A cancer cell capture biochip consisting of microchannels of size 2.0 cm long and 500 μm wide and deep, was etched onto Polydimethylsiloxane. Epithelial membrane antigen (EMA) and Epithelial growth factor receptor (EGFR) were coated on the inner surface of the microchannels. The overall chip measured 2.0 cm × 1.5 cm × 0.5 cm. Normal and tumor breast cells in a phosphate buffered saline (PBS) suspension were flowed through the biochip channels at a rate of 15 μL/min. Breast cancer cells were preferentially captured and identified while most of normal cells passed through. The capture rates for tumor and normal cells were found to be >30% and <5%, respectively. This preliminary cancer cell capture biochip design supports our initial effort of moving a BioMEMS device, from the bench top to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • I. Caelen, A. Bernard, D. Juncker, B. Michel, H. Heinzelmann, and E. Delamarche, Langmuir 16, 9125 (2000).

    Article  Google Scholar 

  • R.Castellani, E.W. Visscher, and S. Wykes, Cancer 73, 344 (1994).

    Article  Google Scholar 

  • J.W. Chapman, E.B. Fish, and M.A. Link, Br. J. Cancer 79, 1508 (1999).

    Article  Google Scholar 

  • R.L. Chien and J.W. Parce, Fresenius J. Anal. Chem. 371,106 (2001).

    Article  Google Scholar 

  • M.A. Cuello, M. Nau, and S. Lipkowitz, Breast Dis. 15, 71 (2002).

    Google Scholar 

  • A. Daridon, V. Fascio, J. Lichtenberg, R. Wutrich, H. Langen, E. Verpoorte, and N.F. De Rooij, Fresenius J. Anal. Chem. 371, 261 (2001).

    Article  Google Scholar 

  • M.B. Esch, L.E. Locascio, M.J. Tarlov, and R.A. Durst, Anal. Chem. 73, 152 (2001).

    Google Scholar 

  • E. Evron, W.C. Dooley, C.B. Umbricht, and S. Sukumar, Lancet 357, 1335 (2001).

    Article  Google Scholar 

  • G.S. Fiorini and D.T. Chiu, BioTechniques 38, 429 (2005).

    Article  Google Scholar 

  • A. Folch, S. Mezzour, M. During, O. Hurtado, M. Toner, and R. Muller, Biochemical Microdevices 2 (2000).

  • S.A.W. Fuqua and Y. Cui, Breast Dis. 15, 3 (2002).

    Google Scholar 

  • S.A.W. Fuqua, Mol. Cell. Biol. 22, 3373 (2002).

    Article  Google Scholar 

  • Q. Gao, V. Shi and S. Liu, Fresenius J. Anal. Chem. 371, 137 (2001).

    Article  Google Scholar 

  • M. Gion, L. Peloso, R. Mione, and G. Cappelli, Breast Dis. 21, 23 (2001).

    Google Scholar 

  • S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, and H. Misawa, Nanotechnology 16, 846 (2005).

    Article  Google Scholar 

  • R.R. Kumar, A. Meenakshi, and N. Sivakumar, Hum. Antibodies 10, 143 (2001).

    Google Scholar 

  • M.M. Ngundi, L.C. Shriver-Lake, M.H. Moore, M.E. Lassman, F.S. Ligler, and C.R. Taitt, Anal. Chem. 77, 148 (2005).

    Article  Google Scholar 

  • S. Nicholoson, J. Richard, and C. Sainsbury, Br. J. Cancer 63, 146 (1991).

    Google Scholar 

  • D.J. O’Shannessy, M. Brigham-Burke, and K. Peck, Anal. Biochem. 205, 132 (1992).

    Article  Google Scholar 

  • Z. Quan and D.J. Bornhop, In: Lab Automation (Palm Springs, CA. USA, 2001).

    Google Scholar 

  • J.G. Quinn, S. O’Neil, A. Doyle, C. McAtamney, D. Diamond, B.D. MacCraith, and R. O’Kennedy, Anal. Biochem. 281, 143 (2000).

    Article  Google Scholar 

  • J.S. Ross, G.P. Linette, J. Stec, E. Clark, M. Ayers, N. Leschly, W.F. Symmans, G.N. Hortobagyi, and L. Pusztai, Expert Rev. Mol. Diagn. 3, 573 (2003).

    Article  Google Scholar 

  • S. F. Sener, B. Cady, and D. Merkel, Cancer Pract. 10, 45 (2002).

    Article  Google Scholar 

  • L.C. Shriver-Lake, C.R. Taitt, and F.S. Ligler, J. AOAC Int. 87, 1498 (2004).

    Google Scholar 

  • S.K. Sia and G.M. Whitesides, Electrophoresis 24, 3563 (2003).

    Article  Google Scholar 

  • M.S. Simon, D. Ibrahim, L. Newman, and M. Stano, Drugs Aging 19, 453 (2002).

    Article  Google Scholar 

  • A. Stromberg, A. Karlsson, F. Ryttsen, M. Davidson, D.T. Chiu, and O. Orwar, Anal. Chem. 73, 126 (2001).

    Article  Google Scholar 

  • C.R. Taitt, J.P. Golden, Y.S. Shubin, L.C. Shriver-Lake, K.E. Sapsford, A. Rasooly, and F.S. Ligler, Microb. Ecol. 47, 175 (2004).

    Article  Google Scholar 

  • F. Warnberg, H. Nordgren, L. Bergkvist, and L. Holmberg, Br. J. Cancer 85, 869 (2001).

    Article  Google Scholar 

  • H.J. Watts and C.R. Lowe, Anal. Chem. 66, 2465 (1994).

    Article  Google Scholar 

  • B. Zhao, N.O. L. Viernes, J.S. Moore, and D.J. Beebe, J. Am. Chem. Soc. 124, 5284 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by DOD US Army Breast Cancer Research Program Idea Award DAMD-17-02-1-0581, and Robert A. Welch Research Foundation (D-1158) given to KHC.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z., Cheng, K.H., Vaughn, M.W. et al. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Biomed Microdevices 9, 35–42 (2007). https://doi.org/10.1007/s10544-006-9010-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9010-x

Keywords

Navigation