Skip to main content
Log in

Release of Biologically Functional Interferon-Alpha from a Nanochannel Delivery System

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Metastatic melanoma lesions often are unresectable due to their size and/or location near critical structures. These lesions represent a significant challenge for the oncologist, because radiation therapy and chemotherapy are infrequently successful in halting tumor growth. Of primary concern is the fact that these lesions are usually painful and present a cosmetic dilemma. We hypothesized that the development of a silicon-based nano-device capable of delivering antitumor compounds (e.g. immune modulators), locally, at a constant rate, to the tumor microenvironment could avoid the toxicity of systemic administration and the inconvenience of frequent clinic visits for local injections. Because of its diminutive size, such a device could be implanted using a minimally invasive procedure in close proximity to unresectable melanoma lesions. The current report uses interferon alpha-2b (IFN-α) as a model antitumor agent, since it is commonly used in the treatment of malignant melanoma and metastatic renal cell carcinoma. In this system, IFN-α is delivered directly to the tumor microenvironment by a novel nanochannel delivery system (nDS) that is capable of zero order release of small molecules. We have demonstrated that the IFN-α released from the nDS is functionally active on both host immune cells and a human melanoma cell line in vitro. This drug delivery platform could be used to develop alternative strategies for the treatment of unresectable tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C.M. Balch, Biologic Therapy (Quality Medical Publishing, St. Louis, 1998), p. 419.

    Google Scholar 

  • F. Belardelli, M. Ferrantini, E. Proietti, and J.M. Kirkwood, Cytokine Growth Factor Rev 13, 119 (2002).

    Google Scholar 

  • D.D. Breimer, J Control Release 62, 3 (1999).

    Google Scholar 

  • W. Chu, T. Huen, J. Tu, and M. Ferrari, Proc SPIE 2978, 111 (1996).

    Google Scholar 

  • J.E. Darnell, I.M. Kerr, and G.R. Stark, Science 264, 1415 (1994).

    Google Scholar 

  • T.A. Desai, W.H. Chu, G. Rasi, P. Sinibaldi-Vallebona, E. Guarino, and M. Ferrari, Biomed Microdevices 1, 131 (1999).

    Google Scholar 

  • S.J. Haque and B.R. Williams, Semin Oncol 25(Suppl 1), 14 (1998).

    Google Scholar 

  • D. Ikic, S. Spaventi, I. Padovan, Z. Kusic, V. Cajkovac, D. Ivankovic, N. Dakovic, and P. Nola, Int. J. Dermatol 34, 872 (1995).

    Google Scholar 

  • S.H. Kim, B. Cohen, D. Novick, and M. Rubinstein, Gene 196, 279 (1997).

    Google Scholar 

  • J.M. Kirkwood, M.S. Ernstoff, C.A. Davis, M. Reiss, R. Ferraresi, and S. Rudnick, Ann. Intern. Med. 103, 32 (1985).

    Google Scholar 

  • J.M. Kirkwood, M.H. Strawderman, M.H. Ernstoff, T.J. Smith, E.C. Borden, and R.H. Blum, J. Clin. Oncol. 14, 7 (1996).

    Google Scholar 

  • E.A. Klausner, S. Eyal, E. Lavy, M. Friedman, and A. Hoffman, J. Control Release 88, 117 (2003).

    Google Scholar 

  • D.A. LaVan, T. McGuire, and R. Langer, Nat. Biotechnol 21(10), 1184 (2003).

    Google Scholar 

  • S.S. Legha, Cancer 57, 1675 (1986).

    Google Scholar 

  • M.B. Lens and M. Dawes, J. Clin. Oncol. 20, 1818 (2002).

    Google Scholar 

  • G.B. Lesinski, S.V. Kondadasula, T. Crespin, L. Shen, K. Kendra, M.J. Walker, and W.E. Carson, J. Natl. Cancer Inst. 96, 1331 (2004).

    Article  Google Scholar 

  • S.N. Magonov and M. Whangbo, Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis (Weinheim, NewYork, 1996).

    Google Scholar 

  • F. Martin, R. Walczak, A. Boiarski, M. Cohen, T. West, C. Cosentino, and M. Ferrari, J. Control Release (in press, 2004).

  • N.P. Nguyen, B. Levinson, S. Dutta, U. Karlsson, A. Alfieri, C. Childress, and S. Sallah, Melanoma Res. 13, 67 (2003).

    Google Scholar 

  • R. Parihar, J. Dierksheide, Y. Hu, and W.E. Carson, J. Clin. Invest 110, 983 (2002).

    Google Scholar 

  • C.R. Rossi, M. Foletto, P. Pilati, S. Mocellin, and M. Lise, Semin. Oncol. 29(4), 400 (2002).

    Google Scholar 

  • J.T. Santini, M.J. Cima, and R. Langer, Nature 397, 335 (1999).

    Google Scholar 

  • P.M. Sinha, G. Valco, S. Sharma, X. Liu, and M. Ferrari, Nanotechnology 15, S585 (2004).

    Google Scholar 

  • J.K. Tu, T. Huen, R. Szema, and M. Ferrari, Biomed. Microdevices 1(2), 113 (1999).

    Google Scholar 

  • P. von Wussow, B. Block, F. Hartmann, and H. Deicher, Cancer 61, 1071 (1988).

    Google Scholar 

  • G. Voskerician, M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, and R. Langer, Biomaterials 24(11), 1959 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Carson III.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesinski, G.B., Sharma, S., Varker, K.A. et al. Release of Biologically Functional Interferon-Alpha from a Nanochannel Delivery System. Biomed Microdevices 7, 71–79 (2005). https://doi.org/10.1007/s10544-005-6174-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-6174-8

Key Words

Navigation