Skip to main content
Log in

Effects of residue quality and climate on plant residue decomposition and nutrient release along the transect from humid forest to Sahel of West Africa

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Field litterbag studies were conducted in the 2000 rainy season and the 2000/2001 dry season along the transect of West African major agroecological zones (agroeco-zones) to measure the decomposition of, and N and P release from 5 plant residues (leaves of woody species) with increasing quality: Dactyladenia barteriPterocarpus santalinoides, Alchornea cordifolia, Senna siamea and Gliricidia sepium. The decomposition rate constant (wk−1) ranged from 0.034 (Dactyladenia, subhumid zone) to 0.49 (Gliricidia, humid zone) in the rainy season, and from 0.01 (Dactyladenia, subhumid zone) to 0.235 (Pterocarpus, arid zone) in the dry season. The direct correlation between the decomposition rate of plant residues and their quality was only valid in agroeco-zones where there is not moisture stress. Similarly, the direct correlation between the decomposition rate of plant residues and moisture availability was only valid for plant residues with high quality. The decomposition rate of the low quality plant residue could increase from humid to arid zone in West Africa. In the arid zone, the low quality plant residue could also decompose faster than high quality plant residue. The climate-residue quality interactive effects on plant residue decomposition in West Africa were attributed to the feedback of low quality plant residue’s mulching effect, soil fauna and appreciable photodegradation in dry regions. A decomposition equation that could be used to predict the decomposition rate of plant residues with various qualities across agroeco-zones in West Africa was obtained from this study. The equation was expressed as follow: k = 0.122 − 0.000747*PRQI2− 0.0233*PRQI*CI + 0.00337*CI* PRQI2, in which k is the decomposition rate constant (wk−1), PRQI the plant residue quality index, and CI the climate index (ratio of rainfall to sunshine hours cumulative during the entire decomposition). The response of N and P release from plant residues to residue quality and climate was similar to that of residue decomposition. At the late stage of the dry season decomposition, the high C/N and C/P ratio plant residue (Dactyladenia leaves) that immobilized N and P in wet zones showed a release of N and P in the dry zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ågren GI, Bosatta E (1996) Quality: a bridge between theory and experiment in soil organic matter studies. Oikos 76:522–528

    Article  Google Scholar 

  • Adejuyigbe CO, Tian G, Adeoye GO (1999) Soil microarthropod populations under natural and planted fallows in southwestern Nigeria. Agroforestry Syst 47:263–272

    Article  Google Scholar 

  • Anderson JM, Ingram JS (1993) Tropical soil biology and fertility. a handbook of methods. Commonwealth Agricultural Bureau, Oxon, UK, 221 pp

  • Anderson JM, Swift MJ (1983) Decomposition in tropical forests. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest ecology and management. Blackwell Scientific Publications, Oxford, pp 287–309

    Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  Google Scholar 

  • Badejo MA, Tian G, Brussaard L (1995) Effects of various mulches on soil microarthropods under a maize crop. Biol Fertil Soils 20:294–298

    Article  Google Scholar 

  • Bayala J, Mando A, Teklehaimanot Z, Ouedraogo SJ (2005) Nutrient release from decomposing leaf mulches of karité (Vitellaria paradoxa) and néré (Parkia biglobosa) under semi-arid conditions in Burkina Faso, West Africa. Soil Biol Biochem 37:533–539

    Article  Google Scholar 

  • Coûteaux MM, Mousseau M, Celerier ML, Bottner P (1991) Increased atmospheric CO2 and litter qaulity: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61:54–64

    Article  Google Scholar 

  • Coûteaux MM, Sarmiento L, Bottner P, Acevedo D, Thiéry JM (2002) Decomposition of standard plant material along an altitudinal transect (65–3968 m) in the tropical Andes. Soil Biol Biochem 34:69–78

    Article  Google Scholar 

  • Goering HK, van Soest PJ (1970) Forage fiber analysis. Agriculture handbook no. 379. USDA, Washington, DC, 20 pp

  • Hirobe M, Sabang J, Bhatta BK, Takeda H (2005) Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: decomposition rates and initial litter chemistry. J Forest Res 9:341–346

    Article  Google Scholar 

  • Jagtap SS (1995) Environmental characterization of the moist lowland savanna of Africa. In: Kang BT, Akobundu IO, Manyong M, Carsky RJ, Sanginga N, Kueneman EA (eds). Moist Savanna of Africa: potentials and constraints for crop production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 107–127

    Google Scholar 

  • Lal R (1978) Influence of with- and between-row mulching on soil temperature, soil moisture, root development and yield of maize (Zea mays L.) in a tropical soil. Field Crop Res 1:127-139

    Article  Google Scholar 

  • Lavelle P, Blanchart E Martin A, Martin S (1993) A Hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS® system for mixed model. SAS Institute Inc., Cary, NC, USA, 656 pp

  • Mando A (1997) The impact of termites and mulch on the water balance of crusted Sahelian soil. Soil Technol 11:121–138

    Article  Google Scholar 

  • Okoh AI, Badejo MA, Nathaniel IT, Tian G (1999) Studies on the bacteria, fungi, and springtails (Collembola) of an agroforestry arboretum in Nigeria. Pedobiologia 43:18–27

    Google Scholar 

  • Ouédraogo E, Mando A, Brussaard L (2004) Soil macrofaunal-mediated organic resource disappearance in semi-arid West Africa. Appl Soil Ecol 27:259–267

    Article  Google Scholar 

  • Palm CA, Sanchez PA (1990) Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica 22:330–338

    Article  Google Scholar 

  • Santos P, Whitford WG (1981) The effects of microarthropods on litter decomposition in a Chihuahuan desert ecosystem. Ecology 62:654–663

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems, studies in ecology, vol 5. Blackwell, Oxford

    Google Scholar 

  • Teklay T, Malmer A (2004) Decomposition of leaves from two indigenous trees of contrasting qualities under shaded-coffee and agricultural land-uses during the dry season at Wondo Genet, Ethiopia. Soil Biol Biochem 36:777–786

    Article  Google Scholar 

  • Tian G, Kang BT (1996) A simplified Shaw’s wet-combustion technique for determination of carbon in plant materials. Comm Soil Sci Plant Anal 27:2543–2548

    Article  Google Scholar 

  • Tian G, Kang BT, Brussaard L (1992) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions—Decomposition and nutrient release. Soil Biol Biochem 24:1051–1060

    Article  Google Scholar 

  • Tian G, Brussaard L, Kang BT (1993a) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions—Effects on soil fauna. Soil Biol Biochem 25:731–737

    Article  Google Scholar 

  • Tian G, Kang BT, Brussaard L (1993b) Mulching effect of plant residues with chemically contrasting compositions on maize growth and nutrient accumulation. Plant Soil 153:179–187

    Article  Google Scholar 

  • Tian G, Brussaard L, Kang BT (1995) An index for assessing the quality of plant residues and evaluating their effects on soil and crop in the (sub-)humid tropics. Appl Soil Ecol 2:25–32

    Article  Google Scholar 

  • Tian G, Brussaard L, Kang BT, Swift MJ (1997) Soil fauna-mediated decomposition of plant residues under environmentally stressed condition. In: Cadisch G, Giller K (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK, pp 125–134

    Google Scholar 

  • Vanlauwe B, Dendooven L, Merckx R (1994) Residue fractionation and decomposition: the significance of the active fraction. Plant Soil 158:263–274

    Article  Google Scholar 

  • Vanlauwe B, Sanginga N, Merckx R (1997) Decomposition of four Leucaena and Senna prunings in alley cropping systems under sub-humid tropical conditions: the process and its modifiers. Soil Biol Biochem 29:131–137

    Article  Google Scholar 

  • Wieder R, Lang G (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

  • Whitford WG, Stinnett K, Anderson J (1988) Decomposition of roots in a Chihuahuan Desert ecosystem. Oecologia 75:8–11

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank William Odianarewo, S. Mohammed, Chidi Agbara, Samson Enodumwenben and Olaide Lamidi for field work and sample processing; Philip Igboba, Joe Uponi and Oladele Oguntade for laboratory analyses; and Adekunle Ibiyemi, Emannuel Makeri, Hakeem Ajeigbe and A.O. Osunde for supplying site information. The authors acknowledge the contribution of B.T. Kang for stimulating this work, Dyno Keatinge for supporting the project, and Zainul Abedin for providing statistical advice. We also appreciate the comments of associate editor, Dale Johnson, and two anonymous reviewers that have greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tian.

Additional information

The research was conducted when G. Tian, G. O. Kolawole and F. K. Salako were employees of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, G., Badejo, M.A., Okoh, A.I. et al. Effects of residue quality and climate on plant residue decomposition and nutrient release along the transect from humid forest to Sahel of West Africa. Biogeochemistry 86, 217–229 (2007). https://doi.org/10.1007/s10533-007-9158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9158-3

Keywords

Navigation