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Abstract The paper presents a formal model of the system of number represen-

tations as a multiplicity of mental number axes with a hierarchical structure. The

hierarchy is determined by the mind as it acquires successive types of mental

number axes generated by virtue of some algebraic mechanisms. Three types of

algebraic structures, responsible for functioning these mechanisms, are distin-

guished: BASAN-structures, CASAN-structures and CAPPAN-structures. A founda-

tional order holds between these structures. CAPPAN-structures are derivative from

CASAN-structures which are extensions of BASAN-structures. The constructed

formal model unifies two competitive conceptions of cognitive arithmetic: namely,

the conception of the mental number line and the conception of parallel individ-

uation. The paper is the continuation of a paper entitled Representational structures

of arithmetical thinking, in which rich empirical evidence supporting the model is

presented. The main result achieved in the present paper may be philosophically

interpreted as an attempt to formalize the Kantian conception of the pure idea of

time, understood as the a priori form of human arithmetical thinking. In this way,

our theory may be comprehended as a result of applying the hard method of logical

reconstruction of fundamental epistemological categories.
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1 Introduction

The construction of a formal model for the representational structure of arithmetical

thinking is the main aim of the paper. The presented model is comprehended as a

system of hierarchical algebraic structures which are transformable into one

another. In the first part of our research, entitled Representational structures of

arithmetical thinking, this system is described as consisting of four modules: the

shortest mental number line, the summation mental number line, the point-place

mental number line and, finally, the purely point mental number line. These lines are

understood as mechanisms which generate appropriate numerical representations,

called mental number axes. These axes are understood as being composed of

representations of succeeding numbers. When a subject executes any act of

numerical reference, then in her/his mind the appropriate mental number axis or

even axes are activated.

The shortest mental number line (SMNL) is responsible for our ability to subitize

small cardinalities, not greater than two elements. This mechanism is activated in

the minds of infants or even newborns. This is why they are able to behaviourally

differentiate cardinalities equal to two, exposed to their sensual fields of perception

during experiments (Feigenson and Carey 2003; Feigenson et al. 2002; Antell and

Keating 1983; Xu and Spelke 2000; Lipton and Spelke 2003). The SMNL allows the

mind to synthesise two-point number axes with a starting point and an endpoint.

These axes are activated when the mind is required to react behaviourally to some

stimuli in physical space. The SMNL constitutes the so-called motor code, that is,

the dimension of response in later phases of cognitive development taking various

directions (horizontal or vertical) and turns (from left to right, from right to left,

from top to bottom–or from bottom to top), depending on cultural styles and

schemata encoded in the given mind. The activation of two-point number axes, with

the direction from left to right, in the mind may be interpreted as the process which

determines the appearance of the Simon effect in experiments (Simon 1969;

Hommel 1994; Eimer et al. 1995; Gevers and Lammertyn 2005; anonymous).

In the next phase of cognitive development, the mind expands the SMNL. This

process culminates in shaping the summation mechanism of the mental number line.

In the first stage of expansion, the SMNL is transformed into a summation mental

number axis, which enables the mind to generate prolonged summation mental

number axes, here called BASAN-axes. The mechanism of their generation is

described by the structure named Basic Algebra of Summation Axis of Numbers

(BASAN). In the second stage, BASAN-structures are extended to CASAN-structures

(Complete Algebra of Summation Axis of Numbers). The difference between

BASAN-axes and CASAN-axes involves two properties. BASAN-axes may only be

prolonged, whereas CASAN-axes can be either prolonged or shortened. In BASAN-

axes, the representation of the number zero (the representation of null) does not

occur, whereas in CASAN-axes, the representation of the number zero is the initial

segment. This means that the mind may acquire the notion of zero after having

formatted the mechanism of generating CASAN-axes. The acquisition of CASAN-
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structures usually takes place during cognitive development before formal schooling

has begun.

Mechanisms for processing number representations in accordance with the

mechanism of CASAN-structures are not economical, because any activation of the

representation of a given number enforces activations of all representations of

numbers which are smaller than it. In particular, activations of representations of

large numbers evoke a high system processing load, appearing on the level of the

neuronal implementation of number representations. Hence, the mind transforms

CASAN-structures into other, more economical, algebraic structures which are

responsible for the generation of Complete Algebraic Point-Place Axes of Numbers

(CAPPAN-axes). The main difference between summation axes and point-place

axes is that, in the latter, representations of numbers as segments of a number axis

do not need to include other representations as their parts, whereas in the former

case, each representation of a given number includes all the representations of

smaller numbers. In this way, an algebraic, point-place scaffolding of mental

number axes diminishes the high processing load which accompanies summation

number axes. On the basis of empirical data (Siegler and Opfer 2003; Siegler and

Booth 2004; Booth and Siegler 2006; Berteletti et al. 2010; Barth and Paladino

2011; Cohen and Blanc-Goldhammer 2011), it is assumed in the model that

CAPPAN-axes are logarithmically scaled.

Since even typical children in early education, given appropriate experimental

conditions, are able to map numbers onto a number axis in an approximately linear

manner, it should be assumed that they activate some mechanism of transforming

logarithmically scaled point-place axes into linearly scaled, exact point-axes. Some

researchers (e.g., Siegler and Opfer 2003) postulate that this ability to transform

logarithmically scaled axes into linearly scaled point-axes develops gradually. The

ability to generate linearly scaled, exact point-axes may be treated as a cognitive

basis for developing expert mathematical knowledge consisted of theorems,

strategies and definitions which are required for the solution of mathematical tasks

with different degrees of difficulty. That is why the system of all mental number

lines may be called premature arithmetical competence.

All of the above-distinguished mental number lines function in one integrated

representational system of arithmetic thinking. They are activated in the mind,

depending on the type of act of numerical reference executed by subjects in various

computational situations. For some tasks, the mind may activate short summation

axes. In some situations requiring more exact calculations, the mind activates point-

place axes. The linearly scaled, exact point-axes are usually activated when the

mind must engage digit numerals in its calculations. Furthermore, for the sake of

representing two or more digit numbers, the mind engages clusters of number axes

rather than single axes.

The inter-connections holding between distinguished mental number lines

underlying numerical intentional acts of reference may be presented with the help

of the following diagram (Fig. 1).

The above-distinguished mental number lines are understood as algebraic

structures whose domains are mental number axes with various lengths, falling
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under appropriate types. Thus, one may adopt the terminological convention

according to which mental number lines generate appropriate mental finite number

axes with different lengths.

           The level of the mind-model                                                   The level of the intentional consciousness

transformation 

transformation 

transformation 

transformation

The shortest mental number line 
(SMNL)

The basic summation number line 
(BASAN-MNL)

The complete summation number 
line (CASAN-MNL)

The point-place number line 
(CAPPAN-MNL)

The linearly scaled, exact mental 
number line (LE-MNL)

- referential acts of subitizing
- activation of the dimension of 

response in the mental space

- acts of numerical reference 
towards very  small cardinalities 
and  ordinals in encoding 
processing

- acts of numerical reference 
towards   small cardinalities and  
ordinals in encoding processing

- acts of numerical reference 
towards  greater cardinalities and  
ordinals both in encoding and 
decoding processing

- acts of numerical reference 
towards  greater cardinalities and  
ordinals  in  decoding processing

Fig. 1 The left side of the diagram presents five subsystems of mental number lines in a hierarchical
order. These are responsible for generating appropriate number representations in the mind which
underlie intentional acts of numerical reference towards cardinalities and ordinals. Horizontal arrows
designate relations between appropriate subsystems in the mind-model and corresponding types of
intentional acts of numerical reference. Vertical arrows stand for consecutive transformations of mental
number lines of the following types: the SMNL into the BASAN-MNL, the BASAN-MNL into the CASAN-
MNL, the CASAN-MNL into the CAPPAN-MNL, and finally the CAPPAN-MNL into the LE-MNL
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2 Basic Algebra of Summation Axes of Numbers (BASAN)

In the paper, we assume that the summation representation of numbers concerns

merely non-symbolic numerals. The mechanism of generating summation mental

number axes, based on BASAN-structures, takes part only in encoding processes.

When a subject perceives a relatively small, non-symbolic numeral, then the

BASAN-MNL is activated in her/his mind. In the next phase of any encoding

process, in order to give a numerical result, a BASAN-number axis with an

appropriate length is generated by virtue of the mechanism determined by the

BASAN-MNL. In the case of the summation representation of numbers, parts of

BASAN-number axes are appropriate representations of cardinalities or ordinals.

When such a part of the BASAN-number axis is activated in the mind of any subject,

then she/he takes an appropriate numerical attitude to refer toward perceived

cardinality (numerosity).

BASAN-number axes are treated as segments consisting of sub-segments with a

common starting point. The initial sub-segment on each BASAN-number axis is the

representation of the cardinality one or the ordinal first. The representation of the

cardinality two or the ordinal second is the result of the prolongation of the initial

sub-segment representing the number one or the ordinal first. Similarly, coding the

number three or the ordinal third requires that the sub-segment representing the

number two or the ordinal second is extended with some sub-segment. Such sub-

segments which function as units of prolongation are called coding units. They are

not, however, number representations. They are only tools for synthesizing number

representations and occur in them as their parts. Summation representations of

numbers are parts of BASAN-number axes. Moreover, each representation of a

smaller number is a part of any representation of the greater number. Hence, the

representation of the number one is a part of all representations occurring on

BASAN-number axes. The following diagram presents the geometrical structure of

any BASAN-number axis.

The mechanism of summation encoding may be formalized as a system of

algebraic operations determined by the structure of the following shape: hL, Fi,n, Pi
n,

O, Ai
ni, where L is the mental number line, understood as a vehicle of number

representations and mental number axes Ai
n for i C 1, where i is an index

designating the finite length of an axis Ai and n stands for the shape of coding unit

Pi
n; Fi,n is a referential number code belonging to Ai

n; Pi
n is a unit of coding

correlated to Ai
n (this correlation is indicted by the same upper index n); and, finally,

O is a one-place operator of the prolongation of elements of Ai
n with a unit of coding

Pi
n. Because values of the operator O are also elements of Ai

n, O is an operator which

may be iterated. Expressions of the shape a, b, and k are variables ranging over any

set Ai
n.

2.1 The Mental Number Line L

In the brain, mental number axes are sequences of sets of states of neuronal

activations which appear in the subject’s performance of numerical acts of
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reference. These sets of states may be simply understood as sets of active neurons.

Hence, L may be comprehended in the brain-model (on the distinction between the

brain-model and the mind-model of the MNL, see Krysztofiak 2015) as a potential

sequence of sets of neurons. Its counter-part in the mind-model is a sequence of

points with values of neuronal activations. Each point, being a part of L, possesses a

different value of neuronal activation. This is the only feature differentiating

elements of L. Furthermore, the values of neuronal activations are changeable. This

means that the same point may possess different values of neuronal activations

depending on the length of L. When L is prolonged, values of neuronal activations,

assigned to points which are parts of L before prolongation, increase. The direction

of L is determined by decreasing values of the activation of succeeding points (see

(H3) and (H4) in Krysztofiak 2015).

2.2 Mental Number Axes Ai
n

Mental number axes are understood as finite subsets of L. They have different

lengths indicated by the index i in Ai
n. The measurement of the length of any axis is

the number of all points reassembling or constituting it. Each mental number axis,

lying on L, may be prolonged. From an algebraic point of view, there are no limits to

such prolongations. This is why the mental number line L is a potential vehicle for

an infinite number of mental number axes. Set-theoretic elements of axes are mental

representations of numbers. In the case of BASAN-axes, the relation of inclusion,

which holds between number representations, determines the direction and linear

order of any axis (See Fig. 2). The SMNL, which is constituted of only two points,

is the distinguished mental number axis because it is included in every mental axis

generated by the BASAN-structure.

2.3 The Referential Number Code Fi,n

Each axis possesses a distinguished number representation, called a referential

number code. In BASAN-axes, Fi,n is usually the representation of the number one or

of the ordinal first. However, in some situations the mind may activate Fi,n, as the

representation of a priming numeral stimulus. This takes place in experiments with

the use of the priming technique.

2.4 The Unit of Coding Pi
n

Each mental number axis Ai
n is correlated with a unit of coding Pi

n. This is indicated

by the upper index in Ai
n. Applications of Pi

n in processes of the synthesis of the

mental number axis Ai
n may be treated as points belonging to the mental number line

L. This means that when L, and, thereby, Ai
n, are prolonged, the mind adds a

succeeding unit of coding, Pi
n, to the previously formatted units. The increase in the

length of an axis Ai
n consists in binding the succeeding coding units in the

succeeding segments. Each application of the coding unit Pi
n in the process of

formatting the mental number axis Ai
n may be treated, on the level of the brain-
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model, as a process of activating the succeeding groups of neurons determining the

value of neuronal activation correlated to a given application.

2.5 The Operator of Prolongation O

The mechanism of formatting number representations consists in the prolongation

of the referential number code Fi,n with the unit of coding Pi
n. In this way, the

simplest mental number representations may be comprehended as n-tuples of the

shape: hRep(one), Pi
n, …, Pi

ni, where Rep(one) is the representation of the number

one or the ordinal first. In many cases, Rep(one) is identical to Fi,n. As applications

of Pi
n are understood as points belonging to L, it may be said that they are

constituted by applications of O to succeeding number representations. Since each

application of Pi
n is correlated with the established value of neuronal activation, then

each succeeding application of the prolongation operator O is correlated with the

same value of neuronal activation correlated with a given application of Pi
n.

The following axioms define the structure hL, Ai
n, Fi,n, Pi

n, Oi. Let us call this

structure Basic Algebra of Summation Axis of Numbers (BASAN). ‘,’ stands for set-

theoretic inclusion; ‘[’ designates the relation of belonging an element to the set;

‘h…i’ is an operator of an ordered pair; and ‘:’, ‘?’ and ‘^’ are logical

connectives (equivalence, implication and conjunction):

The representation of number four 

The representation of number three 

                   The representation of number two

The representation of number one

……………….
1                                         2                         3             4 

Fig. 2 The diagram presents the geometrical architecture of the BASAN-number axis with the length of
four cardinalities. This axis is consisted of four number representations in such a way that the
representation of number one is a part of the representations of all succeeding numbers. Similarly, the
representation of number two is a part of all representations of numbers greater than two. The turn of
arrows indicates that all succeeding representations are formatted by the prolongation of preceding
representations. The dotted line shows that the BASAN-number axis may be prolonged. Sub-segments
between h1, 2i, h2, 3i and h3, 4i are coding units. Coding units become shorter with the formatting of
subsequent representations. The representation of number zero does not occur on BASAN-number axes
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A1;BASANð Þð8nÞð8iÞAn
i � L

A2;BASANð Þð8nÞð8iÞFi;n 2 An
i

A3;BASANð Þð8nÞð8iÞð8aÞOðaÞ ¼ ha;Pn
i i

A4;BASANð Þð8aÞOðaÞ 2 L

A5;BASANð Þð8iÞð8aÞ½ð9kÞOkðhPn
i iÞ ¼ a � a 2 L�

A6;BASANð Þð8nÞð8iÞ½i� 2 ! Pn
i ¼ Fi;n�

A7;BASANð Þð8nÞð8iÞð8aÞ½a 2 An
i � ð9kÞða ¼ Ok Fi;n

� �
^ 0� k� iÞ�

Df :Pn
i

� �
ð8nÞPnþ1

i ¼ On hPiið Þ

The axiom (A1, BASAN) says that each axis Ai
n with a length equal to i and with

the coding unit Pi
n is contained in L. In accordance with (A2, BASAN), a referential

number code Fi,n belongs to Ai
n. Hence, Fi,n is a distinguished number representation

located on the mental number line L and correlated with the n-fold iteration of Pi
n.

The axiom (A3, BASAN) describes the mechanism for building number represen-

tations. In light of this axiom, they are ordered pairs constructed out of some

representation and the n-fold iteration of the coding unit Pi
n. Under the set-theoretic

definition of an ordered n-tuple, hx1,…, xni = hhx1,…, xn-1i, xni, representations of

numbers located on the summation number axis are n-tuples of the shape: hFi,n,

Pi
n,…, Pi

ni. The axiom (A4, BASAN) says that each value of the operation of

prolongation O applied to any element of L is also an element of L. This means that

the operation of prolongation does not lead outside of L. The axiom (A5, BASAN)

introduces the concept of an iterated operation of prolongation and, with (A4,

BASAN), defines the mental number line L. In accordance with (A6, BASAN), for the

axes A1
n and A2

n (pieces of the SMNL), a unit of coding is identical to a referential

number code. This axiom does not exclude the situation in which axes have a length

greater than 2 (i[ 2) and Pi
n = Fi,n. The axiom (A7, BASAN) is the definition of

mental number axes. (Df. Pi
n) describes the way of constructing units of coding. For

example, Pi
1 = hPii, Pi

2 = hPi, Pii, Pi
3 = hPi, Pi, Pii, etc.

All structures which satisfy the above-formulated axioms form the family of

BASAN-structures: BASANF
1, …, BASANF

n . The set of proposed axioms does not

exclude the possibility of formatting mental number axes with lengths equal to one.

Depending on the construction of a unit of coding, one may distinguish various

types of BASAN-structures. The primitive BASAN-structure takes the shape of a

BASAN-structure for Pi = Fi. Let *BASANF
n be a canonical structure defined by

adding the following facultative axiom to axioms of BASAN:

A8; *BASANð ÞFi;n ¼ Pn
i

In accordance with (A8, *BASAN) and (Df. Pi
n), one may define the family of

canonical BASAN-structures: *BASANF
1, …, *BASANF

n . Their peculiar feature

consists in the fact that referential number codes correlated with axes generated by

these structures are initial segments of these axes. Each BASANF
n-structure is

responsible for generating in the mind an appropriate mental number axes Ai
n with

various referential number codes and various lengths marked by i, where n is the
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length of a coding unit which serves to generate number representations belonging

to Ai
n. One may say that the BASANF

n-structure determines a mechanism of

abstracting number axes of the shape Ai
n from L.

According to the axioms of *BASANF
1, number representations located on the

summation mental number axes take following shapes: hPii, hPi, Pii, hPi, Pi, Pii, etc.

For *BASANF
2, succeeding number representations take shapes: hPi, Pii, hhPi, Pii,

hPi, Piii, hhPi, Pii, hPi, Pii, hPi, Piii, etc. For n[ 1, BASANF
n-structures participate

in processes of counting or calculating groups of objects. For example, one may

count pairs, threes, fours or even tens or hundreds of objects. In such situations,

when one must count, for instance, three tens of objects (sweets or coins, for

example), the BASANF
10-structure may be synthesized in the mind. The number

representation of 30 may be formatted as an element of many axes of the shape Ai
10,

for the length i C 3.

The BASANF
1-structure determines the effective mechanisms for formatting

representations of very small numbers. However, on the ground of the BASANF
1-

structure, processes producing representations of large numbers are ineffective

because of the length of the operational time required for formatting representations

of such numbers. That is why, if the representation of the number one hundred is to

be synthesized, then, for the sake of the synthesis of the representation of this

number, the mind may select the BASANF
10-structure from the family of BASAN-

structures. In this way, the length of the operational time needed for the synthesis of

the representation under analysis is relatively short. BASANF
n-structures, for n[ 1,

cannot, however, be tools for synthesizing all representations of numbers. For

instance, according to the BASANF
10-structure, numbers smaller than 10 cannot be

synthesized.

In the set L, it is easy to define the relation of the order between representations.

ðDf :�Þð8a; bÞ½a 2 L ^ b 2 L ! ða� Bb � ð9kÞOkðaÞ ¼ bÞ�

Let a = hFj, Pi, Pi, Pi i and b = hFj, Pi, Pi, Pi, Pi, Pii. Hence, b = O2 (a), and

therefore a B b. It is easy to notice that hFj, Pi, Pi, Pi i is a part of hFj, Pi, Pi, Pi, Pi,

Pii. This example shows that the process of synthesizing the representation hFj, Pi,

Pi, Pi, Pi, Pii must pass, as its phase, by the process of synthesizing the

representation hFj, Pi, Pi, Pii. Because each axis Ai
n is a finite set of number

representations, the relation B establishes the linear order in Ai
n. It is easy to prove

that for each i, the structure hAi
n, BBi, where Ai

n is a finite set, is a linear order.

Because Ai
n is a finite set, for each pair of elements of Ai

n, it may be checked which

of them is a part of the other. Axioms (A1, BASAN) - (A8, *BASAN), however, do

not preserve the linear order of L in BASAN-structures. For proving such a formal

property, one needs to adopt the principle of induction. That is why, in accordance

with (A1, BASAN) - (A8, BASAN), L cannot even be treated as a line, although it is

called the mental number line. That is why L is only the vehicle for mental number

axes. Using an Aristotelian metaphor, one may say that L is the matter for axes as

forms.

In the set of axes generated by the same BASANF
n-structure, that is, with the same

coding unit Pi
n, one may define the relation in which one axis is a result of an

Axiomathes (2016) 26:123–155 131

123



extension of the second axis. Let this relation be called the elongation relation and

be symbolized by the sign ‘‘’. Let the phrase ‘The axis Aj
n is formatted by the

elongation of an axis Ai
n’ be formalized as ‘Ai

n ‘ Aj
n’.

ðDf:‘Þð8iÞð8jÞð8BASANn
FÞ i � j ! ðAn

i ‘An
j � Fj;n 2 An

j ^ Fj;n

h

¼ Oi�1ð Pn
i

� �
Þ ^ Pn

i 2 An
j ^ Pn

i 2 An
i

i

For all lengths i and j, such that i is smaller than or equal to j, the axis Aj
n is

formatted by the elongation of the axis Ai
n if and only if the referential number code

Fj,n, which is formatted in virtue of the i - 1-fold iteration of the prolongation

operator O applied to the unit of coding Pi
n, belongs to the axis Aj

n and the unit of

coding Pi
n belongs to both axes.

With the help of the elongation relation, one may describe the mechanism of

transforming the SMNL into summation mental number axes which may be still

prolonged. For BASANF
1-structures, the SMNL is identical to A2

1, consisting of two

number representations taking the following shapes: hPi and hP, Pi, such that hPi
BB hP, Pi. If the axis with a length equal to four is formatted by the elongation of

the SMNL, that is, SMNL ‘ A4
1, then the referential number code F4,1, belonging to

A4
1, should be formatted as the result of O2-1(hPi). Representations of the

succeeding numbers: three and four, belonging to A4
1, will be synthesized as hF4,1,

Pi and hF4,1, P, Pi. If A6
1 is formatted in the next stage, then hF4,1, P, Pi becomes

the referential number code for A6
1. It should be also emphasized that the mind may

form various BASANF
1-axes with the same length, depending on the shape of the

referential number code activated during calculations. For instance, any axis A4
1 may

be correlated with an F4,1 identical to P, hP, Pi or hP, P, Pi. Each sub-segment of a

given BASANF
1-axis may be its referential number code. When F4,1 is identical to P,

the BASANF
1-axis becomes the canonical *BASANF

1-axis.

When a child learns to calculate non-symbolic numerals up to ten, it is probable

that BASANF
1-axes are formatted in its mind by virtue of the sequence of the

following mechanisms: SMNL ‘ A3
1, A3

1 ‘ A4
1, A4

1 ‘ A5
1, …, A9

1 ‘ A10
1 . The

competence to form canonical *BASANF
n-axes with lengths of two to ten points is a

basis for the development of subsequent competencies of forming axes according to

BASANF
n-mechanisms, where n is greater than one. In this way, the mind learns to

calculate non-symbolic numerals grouped in pairs, threes, fours or even in tens.

Canonical *BASANF
n-structures enable the mind to acquire the notion of equinu-

merosity for small cardinals.

3 Complete Algebra of Summation Axes of Numbers (CASAN)

Experimental data show that, in the case of non-symbolic numerals, representations

of numbers smaller than the number represented by a referential number code are

also formatted in the mind. Therefore, it is justifiable to assume that processes of

formatting and activating representations of numbers may proceed, not only in

virtue of prolongation O, but also in virtue of the converse operation O-, called the
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operation of shortening, or abridgment. The introduction of the operation of

shortening O- into the formal model describing mechanisms of processing number

representations on summation mental number axes additionally allows us to explain

how the representation of the number zero (0) is synthesized. It is therefore justified

to assume that BASAN-structures which have been previously encoded in the mind

are transformed into CASAN-structures (Complete Algebra of Summation Axis of

Numbers) which take the shape: hL, Fi,n, Pi
n, O, O-, 0, Ai

ni. Each BASANF
n-structure

is transformable into a corresponding CASANF
n-structure. The axioms which define

these structures are as follows:

A1;CASANð Þð8nÞð8iÞAn
i � L

A2;CASANð Þð8nÞð8iÞFi;n 2 An
i

A3;CASANð Þð8nÞð8iÞð8aÞOðaÞ ¼ ha;Pn
ii

A4;CASANð Þð8aÞOðaÞ 2 L

A5;CASANð Þð8aÞð8iÞ½a 2 An
i � ð9kÞða 2 L ^ a ¼ Ok 0ð Þ ^ k� iÞ�

A6;BASANð Þð8nÞð8iÞ½i� 2 ! h0;Pn
i i ¼ Fi;n�

A7;CASANð Þð8k; hÞ½ð9mÞOmOk ¼ Oh _ ð9mÞOmOh ¼ Ok�
A8;CASANð Þð8nÞð8iÞ0 2 An

i

A9;CASANð Þð8nÞð8iÞPn
i 6¼ 0

A10;CASANð Þð8aÞ½O�OðaÞ ¼ a�
A11;CASANð Þð8aÞ½a 6¼ 0 ! OO�ðaÞ ¼ a�
A12;CASANð ÞO� 0ð Þ ¼ 0

A13;CASANð Þð8aÞO�ðaÞ 2 L

A14;CASANð Þð8jÞð8aÞ½a 2 An
i � ð9kÞða ¼ Ok Fi;n

� �
^ 0� k� iÞ

_ ð9mÞða ¼ O�m
j Fi;n

� �
^ 0�m� iÞ�

Df :Pnð Þð8nÞPnþ1
i ¼ On Pih ið Þ

According to the axiom (A1, CASAN), each CASANF
n-axis Ai

n with length equal to

i and with the coding unit Pi
n, understood as a set of number representations, is

contained in L. The second axiom (A2, CASAN) says that the reference number code

correlated with Ai
n is a number representation. The axioms (A3, CASAN), (A4,

CASAN) and (A5, CASAN) describe the mechanism of formatting number

representations in virtue of applying the prolongation operation O. This operation

does not lead out of L and produces mental number representations as n-tuples of the

following shape: h0, Pi
n,…, Pi

ni. Hence, each CASANF
n-representation of a number

stems from the representation of the number zero. This makes them different from

BASANF
n-representations of numbers. The axiom (A5, CASAN) establishes that 0 is

the generator of all number representations lying on each CASANF
n-axis. In this way,

each CASANF
n-axis possesses two generators. The second one is a referential number

code Fi,n. According to the axiom (A14, CASAN), each number representation

belonging to a given axis Ai
n may be formatted by the use of some iteration of the

prolongation function O or some iteration of the shortening function O- in
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application to Fi,n. The axiom (A6, BASAN) establishes that for very short CASANF
n-

axes, their referential number code is their initial segment h0, Pi
ni. The axiom (A7,

CASAN), in conjunction with other axioms, says that for each pair of number

representations, the first of them is derived by prolongation of the second one or,

conversely, the second one is derived by prolongation of the first one. According to

this axiom, for any two iterations of the prolongation of the operator O, it is a fact

that the former is generated from the latter by superposition with some other

iteration of O or, conversely, the latter is generated from the former by superposition

with some other iteration of O. In conjunction with the other axioms, this means that

for any two number representations belonging to the same axis, the former is

accessible by prolongation from the latter or, conversely, the latter is accessible

from the former by prolongation. In this way, L becomes a linearly ordered set of

number representations because the prolongation operation satisfies the totality

condition. The axioms (A8, CASAN), (A9, CASAN) and (A12, CASAN) describe the

main properties of the representation of the number zero, which belongs to all

CASANF
n-axes. It is different from a coding unit Pi

n and, finally, it is a distinguished

number representation because it cannot be shortened by the application of O- to

another number representation. The axioms (A10, CASAN) and (A11, CASAN) show

that the operation of shortening O- is the inverse of the prolongation operation

O. The axiom (A13, CASAN) says that the operation of shortening does not lead out

of L. The definition (Df. Pn) establishes the way of constructing coding units for

CASANF
n-axes formatted during calculations of objects grouped in pairs, threes,

fours and tens, etc.

In the similar way as in the case of BASANF
n-structures, for canonical *CASANF

n-

structures, one must adopt the facultative axiom:

A15; *CASANð Þð8nÞð8iÞFi;;n ¼ Pn
i

Each CASANF
n-structure is an extension of the appropriate BASANF

n- structure by

adding the representation of the number 0 and the operation of shortening O-. The

mental mechanism of formatting this representation consists in the application of the

shortening operator to the initial segment in any BASANF
n-axis. This means that the

mind encodes the representation of zero after it acquires the competence in the

application of the shortening operation. This explains the fact that children master

the concept of zero only after they master concepts of one, two, three or even four.

The definition of the order B C in CASAN-structures is analogous to (Df. B B).

ðDf :� CÞð8a; bÞ½a 2 L ^ b 2 L ! ða� Cb � ð9kÞOkðaÞ ¼ bÞ�

For each i and n, hAi
n, BCi is a linear order. There is one difference between

BASANF
n-structures and CASANF

n-structures: In CASAN-structures, hL, BCi is a

linear order, whereas in BASANF
n-structures, an analogous fact cannot be proved for

BC. The axiom (A7, CASAN) preserves the fact that hL, BCi is a linear order in

CASANF
n-structures.

The above-formalized mind-model of the MNL may be criticized for having the

following two disadvantages:
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(i) Mechanisms for the synthesis of representations of large numbers would

have to be regulated by CASANF
n -structures with large indices determining

referential number codes. Hence, for the sake of synthesizing representa-

tions of large numbers, the processing of CASANF
n-structures would require

an extremely long operational time.

(ii) A unit of coding Pi
n in BASANF

n-structures, as well as in CASANF
n-structures,

would have the same representational properties in all cases of synthesizing

number representations. This means that the mind would have to use the

same coding unit Pi
n when processing representations of small numbers as

well as large numbers. It seems, however, that coding units for represen-

tations of small numbers differ from coding units for representations of large

numbers. These differences are indicated by size and distance effects. This

is why mental number axes formatted in virtue of BASANF
n- and CASANF

n-

mechanisms are interpreted as having logarithmic scales in which distances

between points become shorter. Thus, it is justifiable to distinguish many

CASANF
n-structures for a given n which use units of coding Pi

n with different

lengths.

For instance, if n = 1 in the canonical *CASANF
n-structure, then Fi,n is defined as

O(h0, P i). The formation of the representation of the number 666 requires, using

only one CASANP
1-structure, the use of 665 applications of the prolongation operator

O to Fi,n. Even if the mind constructs Fi,n as O600 h0, Pi in virtue of the mechanism

determined by some other CASANF
n-structure, the number of applications of O to

F will be sixty six. It is obvious that this number of applications does not comprise

the whole operational time needed for synthesizing the representation of the number

666. In this situation, the priming representation Fi,n must be first formatted and

activated. This, however, requires a long additional operational time. In this case, a

referential number code might be, for instance, the representation of the number

100. The above-presented formal model, however, predicts a situation in which

many CASANF
n-structures are activated in the mind for the sake of formatting

representations of large numbers. If the mind uses three CASANF
n-structures of

shapes hL, Fi,1, Pi
1, O, O-, 0, Aii, hL, Fi,10, Pi

10, O, O-, 0, Ai i and hL, Fi,100, Pi
100,

O, O-, 0, Aii, then the representation of the number 666 may be treated as a

structure composed of three representations of the ordinal 6 located on three axes:

Ai
1, Ai

10, Ai
100 correlated with three units of coding: Pi

1, Pi
10, Pi

100. In this case, the

operational time needed for synthesizing the representation of the number 666,

without the use of priming processing, would comprise eighteen applications of the

operator of prolongation O, spread over three axes, to the representation of the

number zero. The use of priming processing technique would also shorten the

operational time of synthesis. The representation of the number 666, formatted by

the use of *CASANF
n-structures, would be a structure composed of three

representations of the ordinal 6 spread over three axes generated, respectively,

from the following structures: *CASANF
1, *CASANF

10 and *CASANF
100. In these

structures, number referential codes take shapes determined by the following

equations: Fi,1 = h0, Pi
1i, Fi,10 = h0, Pi

10i and Fi,100 = h0, Pi
100i. Hence, the

representation of the number 666, synthesized with the use of canonical *CASANF
n-
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structures, is identical to the triple of the shape: hO6(h0, Pi
1i), O6(h0, Pi

10i), O6(h0,

Pi
100 i)i.

The second disadvantage may be avoided by the introduction of the neuronal

valuation mechanism into the model. The description of this mechanism requires the

use of the concept of points upon which mental number axes, generated by

BASANF
n-structures as well as CASANF

n-structures, are founded. As was noted above,

the points correlated with the same axis differ from each other with respect to their

neuronal activations. The neuronal valuation mechanism consists in introducing

functions of neuronal valuations ValK,j into BASANF
n-structures and CASANF

n-

structures. Each function ValK,j, correlated with the axis Aj with the length equal to j,

where K stands for the intensity of a given neuronal activation, assigns neuronal

activations to points upon which the axis Aj
n is founded. Neuronal activations may

be treated as numbers of neurons activated in the brain during the activations of

number representations in the mind.

Let [Aj] be the set of points upon which the number axis Aj
n, generated by

BASANF
n-structures or CASANF

n-structures, is founded. Its definition for, BASANF
n-

and CASANF
n-structures, respectively, takes the following shapes:

Df : An
j

h i
;BASANn

F

� �
ð8jÞð8BASANn

FÞ i 2 An
j

h i
� ð9aÞ a 2 An

j ^ a¼ Oi hPn
j i

� �� �h i

Df : An
j

h i
;CASANn

F

� �
ð8jÞð8CASANn

FÞ i 2 An
j

h i
� ð9aÞ a 2 An

j ^ a¼ Oi h0;Pn
j i

� �� �h i

Both in the BASANF
n-structures and in CASANF

n-structures, points are the same

objects understood as i-iterations of the prolongation operation applied to a single

coding unit. To speak technically, points are exponents of the prolongation

operation. In the case of CASANF
n-structures, 0 is not a point. Each [Aj

n] is a linearly

ordered finite set. That is why each element of any [Aj
n] may be numbered. Let 1, 2,

…, m be numbers of consecutive points generated by CASAN-structures. For all n

and m, the following theorem holds:

T1ð Þð8nÞð8mÞð8CASANn
FÞð8CASANm

F Þ An
j

h i
¼ Am

j

h i

In accordance with (T1), all CASAN-axes with the same length but with different

coding units are identical.

The function ValK,j may be formalized as operating on numbers of points and

returning values of neuronal activations, where ! is a factorial and / is a quotient.

Df :ValK;n; 1
� �

8 An
j

h i� �
ValK;jð1Þ ¼ j!K

Df :ValK;n; 2
� �

8 An
j

h i� �
ð8m� jÞValK;jð1Þ=m ¼ ValK;jðmÞ

The condition (Df. ValK,n,1) determines the number of neurons required for the

activation of the first point numbered a One on the j-long number axis Aj
n with

intensity K. The second condition determines the number of neurons required for the

activation of the point with number m on the j-long axis with intensity K. The

parameter K is constant. Because representations of numbers belonging to a given
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axis Aj
n are founded upon consecutive points, one may define the implementation

function ImpK,j, correlated with ValK,j, which attributes sequences of neuronal ac-

tivations to representations of numbers belonging to a given axis Aj
n:

Df : ImpK;n
� �

8 An
j

h i� �
ð8mÞð8aÞ a 2 An

j ^ a ¼ Om Pn
j

D E� �
_ a

�h

¼ Om 0;Pn
j

D E� ��
^ m� j ! ImpK;jðaÞ ¼ hValK;jð1Þ; . . .;ValK;jðmÞi

i

What is important is that (Df. ImpK,n) works for all representations of numbers equal

to or smaller than j, and only for some representations of numbers greater than

j. This set of representations of numbers with lengths greater than j, for which the

condition (Df. ValK,j,2) works, constitutes the interval of prolongation of a given

axis Aj
n.

Let us exemplify the job of both functions defined above. Let K be equal to 1. Let

us assume that the mind is set to detect about seven objects. Hence, it synthesizes

the 7-points long axis. Therefore, the neuronal valuation function takes the shape:

Val1,7. On the basis of (Df. ValK,j,1), one gets Val1,7 (1) = 7! = 1� 2 � 3 � 4 � 5 � 6 �
7 = 5040. Hence, all points belonging to our axis are implemented in the brain in

accordance with the following digital circuit: (1, 5040), (2, 2520), (3, 1680), (4,

1260), (5, 1008), (6, 840), (7, 720). The mind is able to prolong this axis for

successive points: (8, 630), (9, 560), (10, 504). If number representations take

summation shapes, numbers of neuronal activations required for implementing them

are as follows: (one, 5040), (two, 7560), (three, 9240), (four, 10500), (five, 11508),

(six, 12348), (seven, 13068), (eight, 13698), (nine, 14258), (ten, 14762). For

example, ImpK,j(three) = hValK,j(1), ValK,j(2), ValK,j(3)i. In result, one gets:

ImpK,j(three) = h5040, 2520, 1680i. Adding these neural values, the result is 9240.

According to the definitions of the neuronal valuation functions (Df. ValK,j) and

the implementation function (Df. ImpK,j), the brain is able to implement only

sufficiently short summation number axes. For j = 20, the number of neurons in the

brain is not sufficient to implement a 20-points long axis. In accordance with our

definitions, this number is equal to j! (factorial), that is,

670,442,572,800,000 9 5040. Any attempt to implement a logarithmic number

axis with twenty points would lead to ‘‘overheating of the brain’’.

To summarize, for the sake of representing very small numbers, a single-axis

mechanism of summation coding is used, determined by BASANF
n-structures or

CASANF
n-structures, generating axes Aj

n for low indices j. For syntheses of

representations of relatively large numbers, many mental number axes Aj
n for low

indices j, determined by CASANF
n-structures, are used. In the case of axes Aj

n for

greater indices j, it is impossible to implement number representations in the brain

because of an insufficient number of neurons. That is why the mind must transform

the mechanism of CASANF
n-structures into a more economical mechanism of

formatting number representations, determined by CAPPAN-structures (Complete

Algebraic Point-Place Axes of Numbers- structures).
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4 The Point-Place Representation of Numbers on the Mental Number
Axes

Mechanisms of processing number representations in accordance with CASANF
n-

structures are not economical, because activations of representations of large

numbers evoke a high system processing load. Hence, the mind transforms

CASANF
n-structures into other, more economical algebraic structures, here called

point-place mental number axes.

The structure of the shape, hW, M0,…, Mz, [Aj
n], 0, B, S, d0,…, dzi, describes the

mechanism of the point-place representation of numbers. W is the function which

attributes each element of a summation axis Aj
n to a corresponding point belonging to

[Aj
n]. W transforms CASAN-axes into linearly ordered sets of points belonging to

CAPPAN-axes. M0,…, Mz are mental point-place number axes (CAPPAN-axes) with

differing degrees of exactness (precision). The lower index ‘z’ stands for the degree of

exactness. If z increases, the degree of exactness also increases. Hence, for instance,

the degree of exactness of M3 is higher than the degree of exactness of M1. [Aj
n] is a

denumerable set of points upon which the number axis Aj
n, generated by CASANF

n-

structures, is founded. 0 is the representation of the number zero belonging to any axis

generated by a given CASANF
n-structure. B is the relation of linear ordering in [Aj

n].

S is the function of the type: S , [Aj
n] 9 PP([Aj

n] [ {0}), where P is a power-set

function. Values of S are called neighborhoods of points. Any neighborhood of a given

point is a set of other points. Hence, S assigns sets of sets of points to a given point.

d0,…, dz are functions which assign distinguished neighborhoods to points. They are

called functions of selection. In other words, each function from the set d0,…, dz

assigns to any point h from [Aj
n] some distinguished element of S(h). Values of

functions d0,…, dz are representations of numbers belonging, respectively, to M0,…,

Mz. d
0,…, dz are thus functions of synthesis which correspond, respectively, to mental

point-place number axesM0,…,Mz. Thus, one may say that the function dz synthesizes

the number axis Mz. The index occurring both in ‘Mz’’ and in ‘dz’ indicates the degree

of exactness with which the axis Mz is synthesized by dz.

4.1 The Function W

Let us define the function W, which transforms number representations belonging to

any summation axis Aj
n, generated by a given CASANF

n-structure, into a

corresponding point belonging to the set [Aj
n] [ {0}:

ðDf :WÞð8a;An
j ;CASAN

n
FÞð8iÞ

a 2 An
j ! W 0ð Þ ¼ 0 ^ WðaÞ ¼ i � a ¼ Oi h0;Pnið Þ

� �� �h i

On the basis of (Df. W), it is easy to prove the following theorem:

T2ð Þð8a;An
j ;CASAN

n
FÞða 2 An

j ! WðaÞ 2 An
j

h i
_WðaÞ ¼ 0Þ
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The set [Aj
n] [ {0} is the point-image of the function W for the summation axis

Aj
n. Let us accept that W*(Aj

n) = [Aj
n] [ {0}.

4.2 The Relation of Linear Ordering £

Let us define the relation B in the following way:

ðDf :�Þð8An
j Þð8k; h;CASANn

FÞ½k 2 W � ðAn
j Þ ^ h 2 W � ðAn

j Þ ! ½k� h � ð9a; bÞða
2 An

j ^ b 2 An
j ^WðaÞ ¼ k ^WðbÞ

¼ h ^ a� CbÞ��

It is easy to prove that B satisfies all the conditions of linearly ordering relations.

T3ð Þð8kÞ½k 2W � ðAn
j Þ ! k� k�

T4ð Þð8k; hÞ½k 2 W � ðAn
j Þ ^ h 2 W � ðAn

j Þ ! ðk�h^ h� k ! k ¼ hÞ�
T5ð Þð8k; h; tÞ½k 2W � ðAn

j Þ ^ h 2W � ðAn
j Þ ^ t 2 W � ðAn

j Þ ! ðk�h ^ h� t ! k� tÞ�
T6ð Þð8k; hÞ½k 2 W � ðAn

j Þ ^ h 2 W � ðAn
j Þ ! k�h _ h� k�

4.3 The Function of Neighborhoods of Points S

For the sake of defining the function S, let us define the function which produces

point intervals formed of elements of the class W*(Aj
n). Let k be the lambda-

operator (abstractor).

ðDf :½. . .�Þ½k; h� ¼ ðktÞðk� t ^ t� hÞ

The point interval [k, h] is the set of points including all the points between and

including k and h. The shortest intervals possess the shape [k, k].
For each k from W*(Aj

n), the function S produces the set of all point

neighborhoods. S is defined with the help of the relation of equinumerosity &.

Df :Sð Þð8hÞð8An
j Þ½h 2 W � ðAn

j Þ ! S hð Þ ¼ ðkaÞð9t; kÞðt 2 W � ðAn
j Þ ^ k

2 W � ðAn
j Þ ^ a ¼ ½t; k� ^ ½t; h� 	 ½h; k��

A point interval [t, k] belongs to the set of all point neighborhoods of point h if

and only if the point interval [t, h] is equinumerous to the point interval [h, k]. This

means that the point h divides each of its neighborhoods in half. It is easy to notice

that for each S(h), the relation of inclusion determines a linear ordering of its

elements. For instance, the set of neighborhoods of the point 3 consists of the

following point intervals : [3, 3], [2, 4], [1, 5], [0, 6]. Furthermore, each S(h) is a

finite set. If the number of a point h belonging to W*(Aj
n) increases, the cardinality of

the set S(h) also increases.
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4.4 Functions of Selection d0,…, dz

Let d0 be a basic function of selection ascribing a distinguished point-neighborhood

to each point from W*(Aj
n). Because S(h) is a linearly ordered set whose order is

determined by the relation of inclusion between elements of S(h), so in each subset

of S(h) there exists a distinguished, maximal element. Let Max( be the function

which selects the maximal element from any class of sets due to the relation of

inclusion. The definition of d0 proceeds as follows (where Card is a function

ascribing to any set its cardinality):

ðDf :d0Þð8hÞð8An
j Þ½h 2 W � ðAn

j Þ ! d0 hð Þ ¼ Max
ðkaÞða
2 S hð Þ ^ Card að Þ\Card½1; h�Þ�

In accordance with (Df. d0), the distinguished neighborhood of h is the maximal

element, due to the relation of inclusion, in the subset of S(h) formed by sets with a

cardinality less than Card[1, h]. For example, it is easy to derive the fact that

d0(3) = [3, 3], because the cardinalities of the other two neighborhoods, that is, [2,

4] and [1, 5], are not less than the cardinality of [1, 3]. Values of the function of

selection d0 are representations of numbers on the mental point-place axis M0. It is

easy to prove: d0(0) = [0, 0], d0(1) = [1, 1], d0(2) = [2, 2]. Hence, representations

of initial numbers, that is, d0(0), d0(1), d0(2) and d0(3), belonging to M0 and

synthesized by the selection function d0, take the shape of a point.

Functions of the selection, which act with greater precision, may be defined with

the help of the operation of cutting a point in neighborhoods. Let Cut be defined in

the following way, where Seq is the successor function determined on W*(Aj
n).

Df :Seqð Þð8An
j Þð8h; kÞ½h 2 W � ðAn

j Þ ^ ðk 2 W � ðAn
j Þ _ k 2 W � ðAn

jþ1ÞÞ
! ½Seq hð Þ ¼ k � ð9aÞða 2 An

j ^ OðaÞ 2 An
j ^WðaÞ ¼ h ^WðOðaÞÞ ¼ kÞ��

Df :Cutð Þ ið Þh ¼ k ! Cut½h; k� ¼ ½h; k�; iið Þh 6¼ k ! Cut½h; Seq kð Þ� ¼ ½Seq hð Þ; k�

The Cut function shortens a given point interval by the same length on both sides.

The Cut function enables the construction of a sequence of selection functions in

which each succeeding function produces representations of numbers with

increasing precision. The Cut function may be iterated.

The definition of functions of selection for indices of precision greater than 0

takes the following shape:

ðDf :dzÞð8An
j Þð8hÞð8zÞ½z 6¼ 0 ^ h 2 W � An

j

� �
! dz hð Þ ¼ CutzðMax
ðkaÞða

2 S hð Þ ^ Card að Þ\Card½1; h�ÞÞ�

The upper index in dz indicates the degree of precision which is correlated with

the index of iteration in Cutz.

It is easy to prove the following theorem:

T7ð Þð8An
j Þð8hÞð8zÞð8wÞ½h 2 W � An

j

� �
^ z\w ! ðdz hð Þ ¼ ½h; h� ! dw hð Þ

¼ ½h; h�Þ�
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In accordance with (T7), if the selection function dz assigns to h a number

representation taking the shape of a point, then the selection function dw with the

degree of precision w greater than z also assigns to h a number representation taking

the shape of a point.

Let us exemplify the job of the selection function dz. For each z, dz(3) = [3, 3].

For the point 4 from each W*(Aj
n), such that 4 [ W*(Aj

n), d0(4) = [3, 5] and

d1(4) = [4, 4]. For the point 8 from each W*(Aj
n), such that 8 [W*(Aj

n), one gets the

following values for consecutive selection functions: d0(8) = [5, 11], d1(8) = [6,

10], d2(8) = [7, 9] and d3(8) = [8, 8]. It is easy to prove that for each h belonging to

W*(Aj
n), there exists such z that dz(h) = [h, h].

T8ð Þð8An
j Þð8hÞ½h 2 W � An

j

� �
! ð9zÞðdz hð Þ ¼ ½h; h�Þ�

4.5 Mental Point-Place Number Axes M0,…, Mz

A mental axis of number representations Mz with the degree of precision z may be

defined in the following way:

Df :Mzð Þð8aÞð8zÞ a2Mz �ð9hÞ 9An
j

� �
An
j 2CASANn

F ^h2W� An
j

� �
^dzðhÞ¼ a

� �h i

In light of (Df. Mz), Mz is composed of all the distinguished point intervals, being

values of the selection function dz applied to succeeding points of W*(Aj
n).

In accordance with (Df. Mz), the mental point-place number axis M0, for instance,

founded upon the CASAN-axis A5
1 with the length equal to five points, should be the

set of the following number representations: 0, [1,1], [2,2], [3,3], [3,5]. It is easy to

see that the point-place number representation [4,6], belonging to the mental point-

place number axis M0, needs the longer CASAN-axis for its formatting, namely the

CASAN-axis A6
1. This example shows that each mental point-place number axis M0,

resulting from the transformation of any CASAN-axis with a length greater than

three points, is always shorter than the CASAN-axis at input.

Structures of shapes hW, Mz, [Aj
n], 0, B , S, dzi are sub-structures of the general

structure of the shape hW, M0,…, Mk, [Aj
n], B , 0, S, d0,…, dki. Each CAPPAN-

structure of the shape hW, Mz, [Aj
n], 0, B, S, dzi determines the cognitive mechanism

of formatting number representations with the degree of precision z. If the mind is

going to enumerate some set of objects, for instance, it must derive an appropriate

sub-structure hW, Mz, [Aj
n], 0, B , S, dzi from the general structure hW, M0,…, Mk,

[Aj
n], B, 0, S, d0,…, dki. The choice of sub-structure hW, Mz, [Aj

n], 0, B, S, dzi is

settled by the expected degree of precision of a given estimation. If the mind expects

a high degree of precision for its calculation, then it generates and activates a

mechanism of formatting representations of numbers coordinated to the selection

function dz with a sufficiently high index z. If the computational intention is not

directed to a high degree of precision (as when one wants to estimate the cardinality

of objects approximately), then the mind generates and activates a mental number

axis with a low degree of precision.
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The representational mechanism activated by the mind during its acts of numeral

reference may be formalized as an ordered pair composed of the structure hW,

M0,…, Mz, [Aj
n], B, 0, S, d0,…, dzi and the function of computational intention X,

whose arguments are indices of precision and values are sub-structures of the shape:

hW, Mz, [Aj
n], 0, B , S, dzi.

ðDf :XÞX zð Þ ¼ hW;Mz; An
j

h i
; 0; � ; S; dzi

During an act of numeral reference, the mind activates an intention of

computational precision which selects an appropriate substructure from the set of

all substructures of the structure hW, M0,…, Mk, [Aj
n], B, 0, S, d0,…, dki.

Since even typical children in early education, given appropriate experimental

conditions, are able to map numbers onto a number axis in an approximately linear

manner, it should be assumed that they activate some mechanism for transforming

logarithmically scaled point-place axes into linearly scaled, exact point-axes. Such

transformations may be explained as being caused by a function of computational

intention X for maximally high indices of computational precision which returns

exact point number axes. Let Xz??(z) be such a function of maximal computational

intention. That is why all functions of computational intention, correlated with a

structure hW, Mz, [Aj
n], 0, B , S, dzi, for 0 B z B ?, generate the sequence of sub-

structures: X(0), X(1), X(2), …,Xz??(z). In this way, exact point-axes appear as

limit structures of point-place axes. Their vehicle may be interpreted as the LE-

MNL.

5 Scaling the Mental Number Axes

The logarithmic scaling of the mental number axis, synthesized by the mind in

accordance with the summation mechanism (CASAN-axis mechanism), may be

explained by reference to an implementation mechanism of the mental number axis

in the neuronal net, described by definitions: (Df. ValK,n,1), (Df. ValK,n,2) and

(Df. ImpK,n). For instance, if one assumes that the length of a section on the

summation mental number CASAN-axis is proportional to the number of neurons

required to store it in the mind (that is, for its implementation in the brain), then the

logarithmic scaling of this axis may be explained by a power-saving mechanism of

activation in processes of coding and saving numerical representations. If the scale

of the mental number axis were linear (that is, for any two numerical summation

representations Om(a) and Om(b), the lengths of point-intervals [W(a),W(Om(a))] and

[W(b),W(Om(b))] were equal), then the number of neurons engaged in the synthesis

of any summation numerical representation would be greater than the number

needed for the synthesis of that representation in accordance with the logarithmic

scale determined by the definition of the neuronal valuation function ValK,n.

Moreover, if the value of the logarithmically-encoded number increases, then the

gain by the power-saving activation of neurons also increases.
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This sketch of an explanation assumes that a single neuron cannot be a tool for

the implementation of the coding unit Pi
n on the ground of BASAN-structures and

CASAN-structures. Furthermore, in the case of logarithmic scaling, the number of

coding neurons correlated with the coding unit Pi
n decreases with iterations of the

operation O in processes of the iterated prolongation of sections which represent

numbers. This theoretical model predicts that the summation mechanism of coding

number representations has a limitation. At some point, the amount of neurons

required for the implementation of the coding unit Pi
n will be exhausted, since the

mechanism involves the use of fewer and fewer neurons with each subsequent

iteration of the operation O.

The question, however, remains: Are point-place mental number axes scaled

logarithmically or linearly? According to the mechanism of logarithmic scaling,

sections which encode numbers should get shorter as the value of encoded numbers

increases. On the mental number axis synthesized in accordance with the point-

place mechanism of encoding numbers, for each selection function dz, sections

which represent numbers get longer as the value of encoded numbers increases. This

is confirmed indirectly in (Cohen and Blanc-Goldhammer 2011). Furthermore, if an

exponent in dz decreases, then the lengths of sections representing consecutive

natural numbers increase. Hence, if the length of a section representing a given

number is proportional to the number of neurons required for the activation of that

representation, then the number of neurons required for the activation of a number

representation on any point-place axis for each dz increases with each increase in

numeral value. Moreover, it is worth noting that for sufficiently high values of

exponents of the function dz, representations of numbers belonging to the starting

interval are points, not sections. The extension of this starting interval on the point-

place axis increases with the increase of the exponent of the selection function dz.
Hence, we may accept the hypothesis that for each point-place axis, its starting

interval of point-representations is scaled logarithmically, whereas the remainder of

the axis consisting of place-representations gradually loses its logarithmic scale with

the increase in values of represented numbers. This means that the sequence of

distances between middles of consecutive sections representing numbers maps a

logarithmic scale with decreasing accuracy.1 It seems that the presence of a

logarithmic scale on any point-place axis is not absolute; logarithmic scaling is

relative. The process of scaling a point-place axis might be modeled in the following

way: The mind first attributes three numbers (one, two, three) to points on an axis

(representations underlying acts of subitizing); subsequently, it logarithmically

scales sections representing numbers up to some limit on a given point-place axis.

1 This hypothesis explains some empirical facts. If, in the classic experiment on axis scaling, subjects are

first asked to locate relatively small numbers on the axis from 0 to 100 (for instance: 1, 4, 5, 10), and,

subsequently, they must locate numbers from the interval (90, 100) on the same axis, then their marks on

the axis run into one another. For numbers from the interval (90, 100), the marks with consecutive

distances between them are constant. This is why such a fact may be interpreted as the empirical

manifestation of the theoretical phenomenon of gradually losing logarithmic scale by an axis. However,

from a logarithmic scaling point of view, if the distance from the starting point (zero) to one in the

interval (0, 100) is sufficiently small, then distances between points from the interval (90, 100) are not

perceptually distinguishable.
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By comparing the number of neuronal activations required for the implemen-

tation of summation number representations with the number required for point-

place representations, it is easy to observe the neuronal activation advantage in

favor of the point-place mechanism. This conclusion may be illustrated by the

following chart (Table 1).

The chart also shows that the mechanism for transforming CASAN-axes into

CAPPAN-axes may be explained by processes of diminishing high processing loads

of CASAN-axes.

The question arises: What is the mechanism for the transformation of the

logarithmic axis determined by Xz??(z) into the so-called mental axis of exact

numbers? Since the logarithmic scale of an axis is a function of the logarithmic

scale imposed on successive numbers of neuronal activations required for

implementing point-representations on an axis, then the linear scale of an axis

should be implemented on the same numbers of neuronal activations. In the case of

the logarithmic scale, the neuronal process of distinguishing between groups of

neuronal activations manifests in the mind as the process of distinguishing between

corresponding number representations. For instance (see the chart above), if the

brain detects a group of 2,520 active neurons and distinguishes it from a group of

1,680 active neurons, then the mind correlated to the given brain activates two

point-representations of numbers on a given number axis, namely, two and three.

When two non-symbolic numerals (for instance, two stones on a pavement and three

people standing near them) affect the mind, it is able to distinguish these

cardinalities without the use of symbolic numerals (without verbal numerals and

digits) in its experience, because the brain underlying the mind distinguishes

between numbers of neuronal activations affected by two stones and three people.

Therefore, the disappearance of the logarithmic scale of the mental number axis

would cause the disappearance of the ability to non-verbally differentiate between

non-symbolic numerals affecting the mind in various life-situations. In what ways

could the brain distinguish between the same numbers of neuronal activations

Table 1 If the argument of X(z) increases, then the neuronal activation advantage also increases

Number

representation

Number of neuronal activations

on summation encoding

mechanism

Number of activations

on point-place encoding

mechanism for X(0)

Neuronal

activation

advantage

1 (one) 5040 5040 0

2 (two) 7560 2520 5040

3 (three) 9240 1680 7560

4 (four) 10,500 3948 6552

5 (five) 11,508 3108 8400

6 (six) 12,348 4458 7890

7 (seven) 13,068 3758 9310

Total 44,752 = about 63 %

The schedule shows that the logarithmic scale breaks at the number representation four; this is because it

is the first number representation taking the shape of a section on the axis. The logarithmic scale applies

only to point-represented numbers. Hence, for Xz??(z), since all representations are points on the given

mental number axis, its scale is logarithmic
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underlying different number representations belonging to a linearly scaled exact

mental number axis?

Since number representations are associated with linguistic representations of

symbolic numerals (representations of numeral inscriptions or of spoken numerals),

the brain may differentiate two equinumerous groups of neuronal activations by

distinguishing between different linguistic representations of symbolic numerals.

This means that the mind is able to transform logarithmic mental number axes into

linear mental axes of exact numbers only when it has mastered names of numbers

(digit numerals as well as verbal numerals). When two non-symbolic numerals

affect the mind, they cause processes of neuronal activations which implement

appropriate number representations in the brain. In this way, the mind activates a

mental number axis for some precision value of computational intention. When

X(z) = Xz??(z), the mind activates the logarithmic point-axis on which every

point-representation is associated with some linguistic representation of a

corresponding numeral. In the next phase, the brain transforms the logarithmic

scale of successive numbers of neuronal activations underlying point-representa-

tions of corresponding numbers into a linear scale. On the cerebral level of

implementation, this process consists in leveling the number of neuronal activations

underlying number representations belonging to a given axis. It should be noticed,

however, that the activation of any linear mental number axis is always

accompanied by the activation of linguistic representations of symbolic numerals.

In this way, when the mind is affected by some non-symbolic numeral, it has a

tendency to verbally respond to it.

What is the desirability of this process? If one assumes that leveling the number

of neuronal activations underlying number representations involves the reduction of

the number of neuronal activations in each group of neurons implementing number

representations belonging to a point-axis, then the mechanism of the transformation

of logarithmic axes into linear axes results in power-saving neuronal activation.

Such a transformation might be interpreted as a mechanism protecting the brain

from computational overworking. According to the definition (Df. ValK,j, 1 and 2),

the brain is not able to implement long logarithmic number axes. For instance, for

j C 20, the number of neurons in the brain is not sufficient to implement axes

greater than 20-points long. In such situations, the brain first implements relatively

short, linearly-scaled axes of exact numbers and then extends them to the required

length. This process is conditioned by processes of neuronal activations which

implement representations of symbolic numerals.

To speak metaphorically, the brain must color groups of neurons underlying

number representations with neurons underlying representations of corresponding

symbolic numerals. They function as colors indicating that equinumerous groups of

active neurons implement different number representations. Let C1,…, Cm be

linguistic representations of symbolic numerals designating, respectively, numbers:

1,…, m. Let am be a point-representation of the number m. Let ValK be the neuronal

valuation function attributing representations of symbolic numerals to groups of

appropriate active neurons, where K stands for the intensity of the implementation

process. Let C be the function of coloring neuronal implementations of number

representations defined in the following way:
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ðDf :CÞCðValK;jðamÞÞ ¼ ValK Cmð Þ

C attributes values ValK(Cm) to values ValK,n(m). This function is acquired by the

brain as children practice using numerals. Hence, associations of implementations

of point-representations with implementations of representations of symbolic

numerals may be treated as pairs of the shape: hImpK,j(am), ValK(Cm)i. They may be

treated as implementations of linguistic markers of point-representations belonging

to the axis determined by the function of computational intention Xz??. When the

mind encodes these markers in its memory for the first three or four point-

representations, then, by the use of the reduction function (leveling function) Red,

its brain reduces values ValK,j(1), ValK,j(2), ValK,j(3), ValK,j(4) to some constant

value k.

Df :Redð Þð8jÞð8mÞ½RedðValK;jðamÞÞ ¼ k� � ð9CmÞ½CðValK;jðamÞÞ ¼ ValK Cmð Þ�

According to (Df. Red), the function Red is activated under the following

condition: (i) representations of symbolic numerals and point-representations of the

initial three or four numbers are encoded in the mind, (ii) they are implemented in

neuronal activations in the brain by the functions ValK,j and ValK, and (iii) the

function C colors neuronal implementations underlying point-representations of the

initial three or four numbers.

To summarize, first the mind synthesizes summation mental number axes scaled

logarithmically. In the next phase, the axes are transformed into point-place mental

number axes for chosen selection functions dz coordinated with precise values of the

computational intention function X. This transformation is enforced by a power-

saving mechanism of neuronal activations. In the case of Xz??(z), point-place

mental number axes are transformed into point number axes scaled logarithmically.

When point-representations of initial numbers are associated with corresponding

representations of symbolic numerals, the transformation of the logarithmic scale of

point-axes into linear scale axes is activated. In this way, the mind produces a

pattern of the exact mental number line stored in memory, which is the starting-

point for various arithmetical operations entangled in expert mathematical

knowledge.

6 Empirical Verification of the Model

The presented formal model possesses its empirical evidence in the form of

observational and experimental facts. One may distinguish the following main

categories of evidence: (i) experimental data given in SNARC experiments (in

particular, see: Dehaene et al. 1993; Zhou et al. 2008; Brysbaert 1995; Tlauka 2002;

Castronovo and Seron 2007; Patro and Haman 2012) (ii) neurophysiological data

concerned with processes of neuronal activations during acts of numerical

reference; (iii) experimental data showing distance and size effects, and (iv)

observational facts consisting in our peculiar numerical abilities, such as: subitizing
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small cardinalities, estimating quantificational sizes of numbers and, finally,

counting high cardinalities in the case of savant syndrome.

6.1 SNARC, Size and Distance Effects in Light of the Model

These effects show that number representations encoded in the mind during acts of

numerical reference towards cardinalities, ordinals and magnitudes, which reveal

their spatial orientations, may be modelled as fragments of algebraic structures with

linear orders. These structures take the shapes of finite mental number axes.

Different degrees of the intensity of SNARC effects, which are indicated by

different shapes of SNARC-functions observed as slopes on their charts, indicate

that two types of mental number axes are encoded in the mind during acts of

numerical reference. Experiments show that the intensity of SNARC effects is

stronger in encoding than in decoding processes. This is also partly confirmed by

experiments concerned with size and distance effects described in (Roggeman et al.

2007). Digits exhibit a weaker intensity of the distance and size effect in relation to

non-symbolic numerals which induce encoding processes. That is why represen-

tations underlying encoding processes should be modelled in a different way than

representations underlying decoding processes.

Priming effects observed in experiments show that acts of referring towards

numerals from the range [1, 5] are facilitated by non-symbolic numeral stimuli with

numerical values equal to or greater than the primed stimuli. These effects indicate

that processes of activation of number representations entail activations of number

representations whose number values are adjacent to the number values of

representations at input. The above-constructed formal model formalizes these

effects for small cardinalities or small ordinals as manifestations of activations of

number representations belonging to summation mental number axes.

The phenomenon of the disappearance of priming effects with increased

distances between priming numerals and primed numerals on both sides of an axis

(Naccache and Dehaene 2001; Roggeman et al. 2007) indicates that the summation

coding of number representations does not take place in each case of referring

towards cardinalities or ordinals. The disappearance of priming effects is observed

in decoding processes. This is interpreted, in accordance with the proposed model,

as a marker of the transformation summation mental axes (CASAN-axes) into point-

place mental axes (CAPPAN-axes).

6.2 Neurophysiological Data

According to data presented in (Nieder and Miller 2003, 2004; Nieder and Merten

2007), neurons in the brains of macaque monkeys may react centrally or

peripherally to a given non-symbolic numeral stimulus. This means that the same

neuron may react to many, but not all, of the different cardinalities of non-symbolic

numerals. One of these cardinalities is the one which a given neuron is set to encode

centrally. Other, relatively close cardinalities are encoded peripherally by other

neurons. The activity of neurons attuned to certain number values changes in

accordance with some pattern. For each neuron which encodes a succeeding number
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on the axis, its activity comprises an increasing interval of neurons representing

number values that neighbor a given number. As a result, neurons which encode

increasing number values became less selective. This effect is formalized in our

model by point-place number representations belonging to CAPPAN-axes.

In processes of adaptation (habituation) of the neuronal net within the intra-

parietal sulcus, the similar phenomena are also observed. With the progress of

habituation, the net reacts to the cardinality N less and less until all reactions to the

habituated numeral stimulus disappear. The empirical results indicate that with the

increasing distance between a habituated numeral stimulus and an exhibited

numeral stimulus, the intensity of activation also increases (Piazza et al. 2004, 2007;

Cantlon et al. 2006). The empirical processes of habituation may be treated as

empirical markers of the processes of decreasing indices of precision of the

computational intention function X. When X returns CAPPAN-structures of the

shape X(0), the structure hW, M0, [Aj
n], 0, B, S, d0i stops responding to a given,

sufficiently high numeral. The limiting case of habituation, that is, the complete

disappearance of the reaction, is a marker of the process of deactivation of the

structure hW, Mz, [Aj
n], 0, B, S, dzi for any z. The exhibition of the new numeral

stimulus induces the process of activation of the new structure hW, Mw, [Aj
n], 0, B, S,

dwi with a sufficiently high index of precision. Along with the increased distance

between the habituated numeral stimulus and the new numeral stimulus, the index

of precision of computational intention X also increases, because of the activation of

control attention processes stimulated by the new stimulus.

The greater involvement of attention control in counting tasks when, for instance,

a person must compare the values of digits under time pressure, is confirmed by

some experimental data (Anobile et al. 2012). In such situations, an index of

precision which the function X returns is sufficiently high for the sake of operating

with linearly scaled mental number axes. As a result, subjects are able to perform

exact estimations of cardinalities. CAPPAN-axes, which underlie these acts of exact

numerical reference, become generators of punctual number representations. The

implementation function ImpK,j attributes these point-representations to groups of

the most selective neurons. This effect is formalized in the model as the fact that

ImpK,j(a) = hValK,j (m)i, where a = Om(0). Hence, the degree of selectivity of

neurons implementing number representations is designated in the model by the

lengths of number representations.

6.3 Subitizing

Our model provides a justification for the theory proposed in (Carey 2004; Le Corre

and Carey 2007), according to which the mind of a child does not use the

summation mental number axis, but encodes numeral representations in virtue of the

parallel individuation mechanism. In accordance with the basic assumption of this

conception, the mind of a child is able to generate representations of small

manifolds consisting of one, two or three items. The mind uses the mechanism of

ascribing the so-called attention-markers to different items given in its perceptual

field. In this way, the mind may track all marked items simultaneously. As a result,
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the mind may individuate a few objects at the same time. Acts of tracking a small

number of items in the perceptual field are called acts of subitizing.

The presented formal model predicts the mind’s ability to subitize up to three or

even four items in its perceptual field. According to the model, for any selection

function dz, the first three representations belonging to any mental number axis Mz

of any CAPPAN-axis, that is, representations of one, two and three, are points of the

following shapes: [1, 1], [2, 2] and [3, 3]. This means that the mind is not able to go

wrong when it calculates up to three objects. In other word, the ability to calculate

up to three objects correctly is an a priori condition of the ability to calculate and

estimate n-cardinality. When the mind uses the selection function d0, it may go

wrong in the case of tasks consisting in the estimation or calculation of cardinalities

greater than three. For instance, a child may confuse four objects with three or five

objects. But it is impossible for a child to confuse three objects with two objects. In

this case, under the use of any selection function, it is meaningless to say that

somebody sees approximately three people. Number representations underlying acts

of subitizing are, in accordance with our model, initial punctual representations

belonging to each CAPPAN-axis. Their punctual structure determines the exactness

of subitizing.

In accordance with observations, infants (Feigenson and Carey 2003; Feigenson

et al. 2002) and newborns (Antell and Keating 1983) are unable to differentiate

cardinalities greater than three. Greater cardinalities are only recognized

approximately by infants (Xu and Spelke 2000; Lipton and Spelke 2003). This

means that number representations underlying such approximate acts of numerical

reference possess the shape of sections belonging to CAPPAN-axes.

According to the model we are constructing, the development of computational

abilities is correlated with the mind’s ability to generate and activate the mechanism

of selection described by the selection function dz with a sufficiently high index of

precision z. In the case of the use of the selection function d1, the mind encodes all

numerals from one to four as point representations. This means that the mind never

confuses cardinality four with a lesser cardinality when it calculates the number of

elements of various sets with the precision determined by d1. Such a prediction is

determined by the fact that the mental axis of numbers M1 is composed of the

following representations: [1, 1], [2, 2], [3, 3], [4, 4], [4, 6], [5, 7], [6, 8], etc. This

way of encoding number representations may be observed in experiments with

adults (Trick and Pylyshyn 1994) and with some animals (Hauser and Carey 2003).

The representation of the number seven on the axis M1 is the interval [6, 8]. When

the mind estimates the cardinality of some class with seven elements, it may confuse

this cardinality with all the cardinalities belonging to the interval [6, 8]. Our model

predicts that in this case the mind never confuses the cardinality seven with

cardinalities five or less than five and nine or greater than nine. This means that

when the mind sees at a glance the seven-element manifold of items, then it will

never assert that it perceives four objects.

Our model explains the phenomenon of the computational savant syndrome,

which manifests in the ability to count high cardinalities (dots on a screen, people in

a crowd, etc.). The mind which is able to count at a glance, for instance, fifteen dots

on a screen, in an unambiguous way, functions in accordance with the
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computational mechanism determined by the selection function dz with a very high

degree of precision (with high z). This ability would be a special case of the ability

of subitizing. Our model predicts that ability to subitize up to ten items in the

perceptual field requires the use of the selection function d4. The number which

designates the upper limit of subitizing might be treated as a marker of the degree of

precision in the selection function dz.
The ability of parallel individuation (enabling acts of subitizing) for M0

comprises only the first three cardinalities; for M1 the mind is able to individuate up

to five items at the same time. For M2, the range of effective parallel individuation

(subitizing) increases and comprises cardinalities up to seven. It is obvious that in

perceptual situations there exists some limit to the degree of computational intention

which the mind is not able to exceed. To generalize, if the degree of computational

intention increases to some extent, then the range of effective parallel individuation

expands. Hence, our model also explains how potential artificial minds might be

able to individuate items belonging to classes with very large cardinalities.

6.4 Estimating Quantificational Sizes of Numbers

The logarithmic scaling of mental CASAN-axes may be considered responsible for

computational skills consisting in the situational or contextual estimations of values

(sizes) of natural numbers. In some situations, children estimate that two or three

sweets are a small numbers of sweets. In the case of one hundred or two hundred

specimens of a calculated collection, children’s estimations are often expressed with

the phrase it is many. In some situations, children respond to the numeral million by

the use of words expressing their astonishment at its numerical size. Such

competence in assigning numbers to their quantificational sizes, understood as the

subjective length of time needed for calculating all objects belonging to a set with a

cardinality equal to a given number, also appears in various everyday situations in

which the mature mind must evaluate the quantificational size of numbers whose

numerals stand for cardinalities of various collections. The mind often uses verbal

scales for the sake of estimating quantificational sizes of numbers. Some of these

scales are created ad hoc in communicational situations. Let us take the following

scale as an example: less than little, little, less than middling, middling, many,

greater than many, extremely many. For some people, $2,000 is quite a lot of

money, but for others it is little. An order of two thousand bricks in a building may

be estimated as small, whereas a gardener who wants to build a small composter

may estimate the quantificational size of two thousands bricks with the phrase, ‘too

many’.

By virtue of the summation mechanism, a representation of each consecutive

number is synthesized as a prolongation or an abridgement of a section at the input

by the use of the coding unit Pj
n. With the logarithmic scale, the length of a coding

unit decreases with the increase of an encoded number value in the summation way.

Hence, the quantificational size of a number in a given encoding situation is

correlated with the length of a coding unit Pj
n used by the mind in the last phase of

the synthesis of a given number representation. If such a process requires the use of

a relatively short coding unit Pj
n, then the mind will have a tendency to estimate a

150 Axiomathes (2016) 26:123–155

123



given number as high or very high. If a coding unit used in the synthesis of a given

number representation is relatively long, then the mind will have a tendency to

estimate a given number as low or very low. In this way, numbers ascribed by the

mind to various collections determine the quantificational sizes of their cardinalities.

One hundred apples may be comprehended as many because, for the sake of the

synthesis of the number representation one hundred in a given encoding situation,

the mind uses a short coding unit Pj
n in the last stage of the synthesis of the

representation of the number one hundred. The same number representation may be

synthesized by the use of a long coding unit in another encoding situation: for

instance, when a person estimates the amount of a lump of money in her wallet. In

this case, her mind estimates the number one hundred as low and thereby classifies

the money in her wallet as little money. The number one is always estimated,

regardless of the context, as a little (low) number.

Lengths of coding units P are determined by two parameters: (i) the value of

neuronal activation of the point belonging to a given number representation a,

synthesized in the last stage of the process of formatting a, and (ii) the value of the

neuronal activation of the referential number code Fi,n used in the process of

formatting a. If a = Om(Fi,n), a = Oh(h0, Pj
ni) and Fi,n = Ot(h0, Pj

ni), then the

length of a unit coding Pj
n used in the last stage of synthesizing a is expressed by the

ratio ValK,j (h)/ValK,j (t), where h = t ? m. If h increases, then ValK,j (h) tends to

zero. Hence, ValK,j (h)/ValK,j (t) also tends to zero. As a result, the length of a

coding unit Pj
n used in the last step of the synthesis of a is estimated as short, and,

thereby, the quantificational size of the number represented by a is estimated as

high, great, big or even huge. If a = O2m(Fi,n), a = Oh(h0, Pj
ni) and Fi,n = Ot(h0,

Pj
ni), then the length of a unit coding Pj

n used in the last stage of synthesizing a is

also expressed by the ratio ValK,j (h)/ValK,j (t), In this situation, however, h = t - m.

If h decreases, then ValK,j (h) tends to ValK,j (1), Hence, ValK,j (h)/ValK,j (t) tends to

return high number values. As a result, the quantificational size of the number

represented by a is estimated as high. If ValK,j (h) and ValK,j (t) take similar number

values, then the estimation of the quantificational size of the number represented by

a depends on the estimation of the quantificational size of the number represented

by the referential number code Fj,n.

It is very difficult to explain the mind’s ability and inclination to assign numbers

to their quantificational size by the mechanism of arithmetic scaling. On the

summation axis scaled arithmetically, differences between lengths of consecutive

number representations are constant. Hence, only their lengths might serve as

markers of quantificational sizes of numbers. Such a mechanism imposes the same

length upon a given representation, regardless of the context. Hence, the number

ten, for instance, would have to be estimated by the mind in each situation as having

the same quantificational size. This is not, however, the case. Ten broken teeth after

boxing or ten children in a family manifest themselves as many, whereas ten people

at a Madonna concert will always be estimated as an extremely small audience.

Such a discrepancy in the estimation of the number ten in terms of its

quantificational size may be easily explained on the basis of the model of

logarithmically-scaled summation axes. When the mind synthesizes the represen-

tation of the number ten in the case of broken teeth or children in a family, it usually
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starts this process from a synthesis of the representation of some fixed number (that

is, from a referential number code Fj,n); subsequently, by prolongation of Fj,n, it

finishes the synthesis by reaching the representation of ten. In the situation under

analysis, Fj,n is the representation of some number less than ten. It may be, for

instance, the representation of number of teeth broken during a boxing match or the

number of a friend’s children. If Fj,n is the representation of the number one, then

the length of the coding unit used in the synthesis of the representation of ten in the

last phase is relatively short in comparison to the length of Pj
n used in the first step of

the synthesis of the given representation. According to the logarithmic scale of the

mental number axis, the ratio of the length of coding unit P used in the last phase of

the synthesis of the representation of ten to the length of Pj
n used in the first step of

the process of number representation synthesis (in this case, the length of the

difference between the lengths of the representations of two and one) is 20 %. On

the other hand, if the mind synthesizes the representation of the number ten in the

situation of an audience at a Madonna concert, then it starts this process by a

shortening mechanism from some referential number code Fj,n, which is a

representation of some number far greater than ten. Madonna concerts draw tens of

thousands of people. There is thus a very large ratio of the length of coding unit Pj
n

used in the last stage of synthesis of the number representation ten to the length of

coding unit Pj
n used in the first step of the process of synthesis by the mechanism of

shortening. This means that the length of the coding unit used in the last phase of the

synthesis of the representation of ten is relatively long. Hence, the mind estimates

the number of ten people at a Madonna concert as very small. To summarize, if the

lengths of coding units used in the last phases of the synthesis of a number

representation are relatively long, then the number represented by the given

representation will be estimated by the mind as small with regards to its

quantificational size. If the lengths of coding units used in the last phases of

synthesis are relatively short, then the estimation of the given number with respect

to its quantificational size will result in the verdict great.

7 Concluding Notes

The present paper presents a formal model of the system of number representations

as a multiplicity of mental number axes with a hierarchical structure. The hierarchy

is determined by the mind as it acquires successive types of mental number axes.

The first level of hierarchy consists of the mechanism which enables to generate

summation mental number axes of three types: SMNL-axes, BASAN-axes and

CASAN-axes. Axes of the first type are consisted of two points and they are

responsible for the Simon effect (see Krysztofiak 2012) and our ability to subitize

manifolds consisting of two items. With the cognitive development of an infant, the

mechanism of formatting SMNL-axes is transformed into the mechanism of

formatting axes of the second type, described by axioms of algebras of the shape hL,

Ai
n, Fi,n, Pi

n, Oi. Mental number axes determined by BASAN-structures are

synthesized by the mind only by the use of the operator of prolongation O. The

multiplicity of BASAN-structures is determined by the plurality of coding units Pi
n,

152 Axiomathes (2016) 26:123–155

123



the referential number codes Fi,n and the length i of axes. As a result of the cognitive

development of the mind, BASAN-structures are transformed into CASAN-structures

which generate the mechanism of synthesizing summation mental number axes, not

only by the use of the prolongation operator, but additionally by the use of the

shortening operator O-. All axes generated by CASAN-structures stem from the

representation of the number zero. This second category of mental number axes is

determined by algebraic structures of the shape hL, Fi,n, Pi
n, O, O-, 0, Ai

ni. This does

not, however, mean that the mind’s ability to synthesize mental number axes

according to BASAN-structures disappears. Both BASAN-structures and CASAN-

structures generate number representations belonging to summation mental number

axes in processes of encoding numbers; that is, in processes in which non-symbolic

numerals affect the mind.

In the next phase of cognitive development, the mind transforms the generative

mechanism based on CASAN-structures into a generative mechanism for synthe-

sizing point-place mental number axes determined by CAPPAN-structures of the

shape hW, Mz, [Aj
n], 0, B, S, dzi. This transformation is caused by the power-saving

mechanism of neuronal activations which implement number representations in the

brain. The function of computational intention X(z), playing a key role in this

mechanism, generates algebraic structures correlated with various degrees of

computational precision (precise values), in virtue of which the mind synthesizes

corresponding point-place approximate mental number axes. In this phase, the mind

acquires the ability to synthesize approximate point-place mental number axes with

increasing degrees of precision. Hence, the development of abilities to control

attention supports processes of synthesizing point-place mental axes with increas-

ingly precise values. This phase is ended when the mind acquires the ability to

synthesize exact mental number axes determined by Xz??(z), where z ? ? stands

for maximal precision.

In the third phase, the logarithmic scale of mental number axes generated by the

mechanism hXz??(z), hW, Mz, [Aj
n], 0, B, S, dz� is transformed into a linear scale.

This transformation is necessitated by the impossibility of implementing sufficiently

long mental axes of exact numbers in the neuronal net. Its success may be crowned

only in the case of the mind acquiring verbal numerals. If the mind creates

associations of number representations with representations of verbal numerals, then

it may synthesize representations of arbitrarily large numbers on the mental exact-

number axes. The process of the creation of such associations consists in marking

(coloring) neuronal implementations of point-number representations by neuronal

implementations of representations of verbal numerals. It is governed by the

function of reduction defined in (Df. Red). The ability to synthesize linearly scaled

point-number axes allows the mind to build a mature mathematical competence.

The system of number representations is thus correlated in the mature mind with

a system of linguistic representations of symbolic numerals which is also divided

into at least two subsystems. One comprises representations of verbal numerals,

whereas the other consists of representations of digit numerals. Both subsystems are

associated in every mind which functions efficiently. However, it seems that the

relation of translatability of both subsystems is settled by a third system: namely, the
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system of representations of logical symbolic numerals. This system enables the

mind to translate verbal numerals into Arabic digit numerals and vice versa.

This model should have better verification. In particular, the hypothesis of many

mental number axes generated by the mind in virtue of various algebraic

mechanisms should be empirically tested. Research should aim at the construction

of a formal model describing associations of number representations with

representations of numerals. This requires, in turn, the construction of a logical

grammar of numerals.

This last task should be focused upon investigations concerned with relations

between mental number axes and semantic models of Peano arithmetic. In what

ways are mental number axes transformed into semantic models of PA? Are they

transformed into non-standard semantic models? These questions are a challenge for

defenders of the philosophical conception of the origin of our expert mathematical

knowledge from ‘folk mathematics.’
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