Skip to main content
Log in

Water structures inside and outside single-walled carbon nanotubes under perpendicular electric field

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The structures of water inside and outside (6,6), (8,8), and (10,10) singlewalled carbon nanotubes (SWCNTs) under an electric field perpendicular to the tube axis are investigated by molecular dynamics simulations. The results show that dipole reorientation induced by electric field plays a significant role on the structures of confined water inside and outside SWCNTs. Inside SWCNTs, the average water occupancy and the average number of hydrogen bonds (H-bonds) per water molecule decrease as the electric intensity increases. Because the field intensity is sufficiently strong, the initial water structures inside the SWCNTs are destroyed, and the isolated water clusters are found. Outside SWCNTs, the azimuthal distributions of the density and the average number of H-bonds per water molecule around the solid walls become more and more asymmetric as the electric intensity increases. The percentages of water molecules involved in 0-5 H-bonds for all the three types of SWCNTs under different field intensities are displayed. The results show that those water molecules involved with most H-bonds are the most important to hold the original structures. When the electric field direction is parallel with the original preferred orientation, the density and the H-bond connections in water will be increased; when the electric field direction is perpendicular to the original preferred orientation, the density and the H-bond connections in water will be decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitby, M. and Quirke, N. Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2(2), 87–94 (2007)

    Article  Google Scholar 

  2. Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., and Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037 (2006)

    Article  Google Scholar 

  3. Ghosh, S., Sood, A. K., and Kumar, N. Carbon nanotube flow sensors. Science, 299(5609), 1042–1044 (2003)

    Article  Google Scholar 

  4. Siwy, Z. and Fuliński, A. Fabrication of a synthetic nanopore ion pump. Physical Review Letters, 89(19), 198103 (2002)

    Article  Google Scholar 

  5. Zhu, F. and Schulten, K. Water and proton conduction through carbon nanotubes as models for biological channels. Biophysical Journal, 85(1), 236–244 (2003)

    Article  Google Scholar 

  6. Gong, X. J., Li, J. Y., Lu, H. J., Wan, R. Z., Li, J. C., Hu, J., and Fang, H. P. A charge-driven molecular water pump. Nature Nanotechnology, 2(11), 709–712 (2007)

    Article  Google Scholar 

  7. Hummer, G., Rasaiah, J. C., and Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. nature, 414(6860), 188–190 (2001)

    Article  Google Scholar 

  8. Walther, J. H., Jaffe, R., Halicioglu, T., and Koumoutsakos, P. Carbon nanotubes in water: structural characteristics and energetics. The Journal of Physical Chemistry B, 105(41), 9980–9987 (2001)

    Article  Google Scholar 

  9. Koga, K., Gao, G. T., Tanaka, H., and Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. nature, 412(6849), 802–805 (2001)

    Article  Google Scholar 

  10. Wang, J., Zhu, Y., Zhou, J., and Lu, X. H. Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes. Physical Chemistry Chemical Physics, 6(4), 829–835 (2004)

    Article  Google Scholar 

  11. Zhou, X. Y. and Lu, H. J. The structure and dynamics of water inside armchair carbon nanotube. Chinese Physics B, 16(2), 335–339 (2007)

    Google Scholar 

  12. Alexiadis, A. and Kassinos, S. Influence of water model and nanotube rigidity on the density of water in carbon nanotubes. Chemical Engineering Science, 63(10), 2793–2797 (2008)

    Article  Google Scholar 

  13. Thomas, J. A. and McGaughey, A. J. H. Density, distribution, and orientation of water molecules inside and outside carbon nanotubes. Journal of Chemical Physics, 128(8), 084715 (2008)

    Article  Google Scholar 

  14. Alexiadis, A. and Kassinos, S. Molecular simulation of water in carbon nanotubes. Chemical Reviews, 108(12), 5014–5034 (2008)

    Article  Google Scholar 

  15. Fang, H. P., Wan, R. Z., Gong, X. J., Lu, H. J., and Li, S. Y. Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications. Journal of Physics D: Applied Physics, 41(10), 103002 (2008)

    Article  Google Scholar 

  16. Takaiwa, D., Hatano, I., Koga, K., and Tanaka, H. Phase diagram of water in carbon nanotubes. Proceedings of the National Academy of Sciences, 105(1), 39–43 (2008)

    Article  Google Scholar 

  17. Wan, R. Z., Li, J. Y., Lu, H. J., and Fang, H. P. Controllable water channel gating of nanometer dimensions. Journal of the American Chemical Society, 127(19), 7166–7170 (2005)

    Article  Google Scholar 

  18. Huang, B. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. Journal of Chemical Physics, 122(8), 084708 (2005)

    Article  Google Scholar 

  19. Li, J. Y., Gong, X. J., Lu, H. J., Li, D., Fang, H. P., and Zhou, R. H. Electrostatic gating of a nanometer water channel. Proceedings of the National Academy of Sciences, 104(10), 3687–3692 (2007)

    Article  Google Scholar 

  20. Huang, L. L., Zhang, L. Z., Shao, Q., Wang, J., Lu, L. H., Lu, X. H., Jiang, S. Y., and Shen, W. F. Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes. The Journal of Physical Chemistry B, 110(51), 25761–25768 (2006)

    Article  Google Scholar 

  21. Foroutan, M. and Moshari, M. Molecular dynamics simulations of functionalized carbon nanotubes in water: effects of type and position of functional groups. Physica E: Low-Dimensional Systems and Nanostructures, 43(1), 359–365 (2010)

    Article  Google Scholar 

  22. Vaitheeswaran, S., Rasaiah, J., and Hummer, G. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. Journal of Chemical Physics, 121(16), 7955–7965 (2004)

    Article  Google Scholar 

  23. Xu, B., Qiao, Y., Zhou, Q., and Chen, X. Effect of electric field on liquid infiltration into hydrophobic nanopores. Langmuir, 27(10), 6349–6357 (2011)

    Article  Google Scholar 

  24. Fu, Z., Luo, Y., Ma, J., and Wei, G. Phase transition of nanotube-confined water driven by electric field. Journal of Chemical Physics, 134(15), 154507 (2011)

    Article  Google Scholar 

  25. Su, J. Y. and Guo, H. X. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano, 5(1), 351–359 (2011)

    Article  MathSciNet  Google Scholar 

  26. Figueras, L. and Faraudo, J. Competition between hydrogen bonding and electric field in single-file transport of water in carbon nanotubes. Molecular Simulation, 38(1), 23–25 (2011)

    Article  Google Scholar 

  27. Vaitheeswaran, S., Yin, H., and Rasaiah, J. C. Water between plates in the presence of an electric field in an open system. The Journal of Physical Chemistry B, 109(14), 6629–6635 (2005)

    Article  Google Scholar 

  28. England, J. L., Park, S., and Pande, V. S. Theory for an order-driven disruption of the liquid state in water. The Journal of Physical Chemistry B, 128(4), 044503–044508 (2008)

    Article  Google Scholar 

  29. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447 (2008)

    Article  Google Scholar 

  30. Daub, C. D., Bratko, D., Leung, K., and Luzar, A. Electrowetting at the nanoscale. The Journal of Chemical Physics C, 111(2), 505–509 (2006)

    Article  Google Scholar 

  31. Darden, T., York, D., and Pedersen, L. Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092 (1993)

    Article  Google Scholar 

  32. Wan, R. Z., Lu, H. J., Li, J. Y., Bao, J. D., Hu, J., and Fang, H. P. Concerted orientation induced unidirectional water transport through nanochannels. Physical Chemistry Chemical Physics, 11(42), 9898–9902 (2009)

    Article  Google Scholar 

  33. Suresh, S. J., Satish, A. V., and Choudhary, A. Influence of electric field on the hydrogen bond network of water. Journal of Chemical Physics, 124(7), 074506 (2006)

    Article  Google Scholar 

  34. Walther, J. H., Jaffe, R., Halicioglu, T., and Koumoutsakos, P. Carbon nanotubes in water: structural characteristics and energetics. The Journal of Physical Chemistry B, 105(41), 9980–9987 (2001)

    Article  Google Scholar 

  35. Bratko, D., Daub, C. D., Leung, K., and Luzar, A. Effect of field direction on electrowetting in a nanopore. Journal of the American Chemical Society, 129(9), 2504–2510 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-wei Zhou  (周哲玮).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11372175 and 11272197), the Doctoral Fund of Ministry of Education of China (No. 20103108110004), and the Innovation Program of Shanghai Municipality Education Commission (No. 14ZZ095)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Hu, Gh., Wang, Zl. et al. Water structures inside and outside single-walled carbon nanotubes under perpendicular electric field. Appl. Math. Mech.-Engl. Ed. 35, 1–12 (2014). https://doi.org/10.1007/s10483-014-1767-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1767-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation