Skip to main content
Log in

On the visualization of droplet deformation and breakup during high-pressure homogenization

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The properties of emulsions are strongly influenced by the size distribution of the droplets. In order to achieve droplets on a microscale, high-pressure homogenization is used to transfer stresses to the droplet surface in the flow field upstream, in and downstream the disruption unit of the homogenizer. The droplets are deformed and eventually break up when exceeding critical values. Inline measurement techniques are still very challenging, due to highly complex flow conditions on microscales, high process pressures and large velocities. In this work, the optical flow measurement technique micro particle image velocimetry (μPIV) is used to quantify the flow field, the local stresses as well as droplet deformation and breakup. A special homogenization orifice which is optical accessible enabled the visualization in the whole area of interest before, in and after the restriction up to 80 bars homogenization pressure. The study of the single-phase flow with particular focus on the local stresses showed laminar and transitional conditions at Re number ranging from 285 to 1280. Droplets of two different viscosities are then examined at these conditions while passing the orifice. At the inlet, their size, deformation and position are investigated by an automated image processing algorithm and correlated with the local velocity gradients. At the outlet and downstream, deformation and breakup of droplets are shown within the possibilities of the μPIV and discussed in relation to known droplet breakup mechanisms. Finally, the droplet size distributions offline obtained by static light scattering are compared with observed phenomena of the individual drops in order to gain insights into droplet disruption in high-pressure homogenization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Ca :

Capillary number (–)

Ca crit :

Critical Capillary number (–)

d :

Diameter of the orifice (mm)

d h :

Hydrodynamic diameter (mm)

d out :

Diameter of the inlet and outlet of the orifice unit (mm)

D :

Deformation of droplet (–)

G :

Velocity gradient (1/s)

l :

Length of the orifice (mm)

l E :

Entrance length (mm)

L :

Length of the deformed droplet (mm)

N :

Number of images (–)

Δp :

Homogenization pressure (bar)

Δp max :

Maximum pressure loss (bar)

r :

Radius of the droplet (m)

Re :

Reynolds number (–)

t def :

Critical deformation time (s)

Δt :

Interframing time between two images (s)

u :

Mean axial velocity (m/s)

u a :

Average velocity (m/s)

u m,c :

Mean centerline velocity (m/s)

\(\overline{u^{{\prime }}}\) :

Velocity fluctuations axial direction (m/s)

\(\overline{u^{{{\prime }2}}} /\overline{u_{m,c}^{2}}\) :

Normalized velocity fluctuations axial direction (–)

x :

Streamwise or axial coordinate (mm)

x 50.3 :

Median droplet size (m)

x in/d :

Normalized distance to the orifice inlet (–)

x out/d :

Normalized distance to the orifice outlet (–)

y :

Lateral or radial coordinate (mm)

W :

Width of the deformed droplet (mm)

y/d :

Normalized diameter of the orifice (–)

z :

Height coordinate (mm)

α :

Flow parameter (–)

γ :

Surface tension (N/m)

\(\dot{\varvec{\gamma }}\) :

Shear rate (1/s)

\(\dot{\varvec{\varepsilon }}\) :

Elongational rate (1/s)

λ :

Viscosity ratio (–)

η c :

Dynamic viscosity of the continuous phase (mPa s)

η d :

Dynamic viscosity of the dispersed phase (mPa s)

ρ c :

Density of the fluid (kg/m3)

Φ :

Dispersed phase fraction (%)

τ :

Stress (kg/m s2)

DOC:

Depth of correlation

µPIV:

Micro particle image velocimetry

LV:

Laminar viscous regime

PEG:

Polyethylene glycol

TI:

Turbulent inertia regime

TV:

Turbulent viscous regime

References

  • Aguilar FA, Köhler K, Schubert H, Schuchmann HP (2008) Herstellen von Emulsionen in einfachen und modifizierten Lochblenden: Einfluss der Geometrie auf die Effizienz der Zerkleinerung und Folgen für die Maßstabsvergrößerung. Chem Ing Tech 80:607–613

    Article  Google Scholar 

  • Ball CG, Fellouah H, Pollard A (2012) The flow field in turbulent round free jets. Prog Aerosp Sci 50:1–26

    Article  Google Scholar 

  • Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 167:241–283

    Article  MATH  Google Scholar 

  • Blonski S, Korczyk PM, Kowalewski TA (2007) Analysis of turbulence in a micro-channel emulsifier. Int J Therm Sci 46:1126–1141

    Article  Google Scholar 

  • Budde C, Schaffner D, Walzel P (2002) Drop breakup in liquid-liquid dispersions at an orifice plate observed in a large-scale model. Chem Eng Technol 25:1164–1167

    Article  Google Scholar 

  • Danner T, Schubert H (2001). Coalescence processes in emulsions. In: Dickinson E, Miller R (eds) Food colloids: fundamentals of Formulation (Band 258). Royal Society of Chemistry, pp 116–122

  • Freudig B, Tesch S, Schubert H (2003) Production of emulsions in high-pressure homogenizers—Part II: influence of cavitation on droplet breakup. Eng Life Sci 6(3):266–270

    Article  Google Scholar 

  • Galinat S, Masbernat O, Guiraud P, Dalmazzone C, Noik C (2005) Drop break-up in turbulent pipe flow downstream of a restriction. Chem Eng Sci 60:6511–6528

    Article  Google Scholar 

  • Galinat S, Torres LG, Masbernat O, Guiraud P, Risso F, Dalmazzone C, Noik C (2007) Breakup of a drop in a liquid-liquid pipe flow through an orifice. AIChE J 53(1):56–68

    Article  Google Scholar 

  • Gaulin A (1899) Appareil et Procédé pour la Stabilisation du Lait, Brecet nr. 295596 (patent)

  • Gepperth S, Müller A, Koch R, Bauer H-J (2012) Ligament and droplet characteristics in prefilming airblast atomization. In: 12th triennial international annual conference on liquid atomization and spray systems (ICLASS)

  • Gothsch T, Schilcher C, Richter C, Beinert S, Dietzel A, Büttgenbach S, Kwade A (2015) High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid Nanofluid 18(1):121–130

    Article  Google Scholar 

  • Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277

    Article  Google Scholar 

  • Guido S, Greco F (2004) Dynamics of a liquid drop in a flowing immiscible liquid. Rheol Rev 2:99–142

    Google Scholar 

  • Ha JW, Leal LG (2001) An experimental study of drop deformation and breakup in extensional flow at high capillary number. Phys Fluids 13:1568–1576

    Article  Google Scholar 

  • Hakansson A, Fuchs L, Innings F, Revstedt J, Tragardh C, Bergenstahl B (2011) High resolution experimental measurement of turbulent flow field in a high pressure homogenizer model and its implications on turbulent drop fragmentation. Chem Eng Sci 66(8):1790–1801

    Article  Google Scholar 

  • Hecht LL, Merkel T, Schoth A, Köhler K, Wagner C, Muñoz-Espí R, Landfester K, Schuchmann HP (2013a) Emulsification of particle loaded droplets with regard to miniemulsion polymerization. Chem Eng J 229:206–216

    Article  Google Scholar 

  • Hecht LL, Schoth A, Muñoz-Espí R, Javadi A, Köhler K, Miller R, Landfester K, Schuchmann HP (2013b) Determination of the ideal surfactant concentration in miniemulsion polymerization. Macromol Chem Phys 214:812–823

    Article  Google Scholar 

  • Innings F, Tragardh C (2005) Visualization of the drop deformation and break-up process in a high pressure homogenizer. Chem Eng Technol 28:882–891

    Article  Google Scholar 

  • Innings F, Tragardh C (2007) Analysis of the flow field in a high-pressure homogenizer. Exp Therm Fluid Sci 32(2):345–354

    Article  Google Scholar 

  • Innings F, Fuchs L, Tragardh C (2011) Theoretical and experimental analyses of drop deformation and break-up in a scale model of a high-pressure homogenizer. J Food Eng 103(1):21–28

    Article  Google Scholar 

  • Janssen JMH, Meijer HEH (1993) Droplet breakup mechanisms: stepwise equilibrium versus transient dispersion. J Rheol 37:597–608

    Article  Google Scholar 

  • Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22:1191–1202

    Article  Google Scholar 

  • Johansen FC (1929) Flow through pipe orifices at low Reynolds numbers. Proc R Soc Lond 126:231–245

    Article  Google Scholar 

  • Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341

    Article  Google Scholar 

  • Karbstein H (1994) Untersuchungen zum Herstellen und Stabilisieren von Öl-in-Wasser-Emulsionen, Universität Karlsruhe (TH)

  • Kelemen K (2014) Inline-Messung des Tropfenaufbruchs in Hochdruckblenden: Möglichkeiten und Limitierungen der µPIV, Karlsruher Institut für Technologie (KIT)

  • Kelemen K, Crowther FE, Cierpka C, Hecht LL, Kähler CJ, Schuchmann HP (2015) Investigations on the characterization of laminar and transitional flow conditions after high pressure homogenization orifices. Microfluid Nanofluid 18(4):599–612

    Article  Google Scholar 

  • Köhler K, Tesch S, Freudig B, Schuchmann HP (2012) Chapter XI: Emulgieren in Hochdruckhomogenisatoren. In: Köhler K, Schuchmann HP (eds) Emulgiertechnik: Grundlagen, Verfahren und Anwendungen. 3. Behr’s Verlag, pp S.55–S.88

  • Kolb G, Wagner G, Ulrich J (2001) Untersuchungen zum Aufbruch von Einzeltropfen in Dispergiereinheiten zur Emulsionsherstellung. Chem Ing Tech 73:80–83

    Article  Google Scholar 

  • Kolmogorov AN (1958) Über die Zerstäubung von Tropfen in einer turbulenten Strömung in Sammelband zur statistischen Theorie der Turbulenz. In: Goering H (ed). Akademie-Verlag, Berlin

  • Liao YX, Lucas D (2009) A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci 64(15):3389–3406

    Article  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: ACM siggraph computer graphics, pp 163–169

  • Massey B (1998) Mechanics of Fluids Stanley Thornes, UK

  • McComas ST (1967) Hydrodynamic entrance lengths for ducts of arbitrary cross section. Mech Eng 89(8):847–850

    Google Scholar 

  • Müller A et al (2006) Performance of prefilming airblast atomizers in unsteady flow conditions. In: Proceedings of ASME Turbo Expo 2006: power for land, sea and air, GT2006-90432

  • Olsen MG, Adrian RJ (2000) Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp Fluids 29:166–174

    Article  Google Scholar 

  • Pilu M, Fitzgibbon AW, Fisher RB (1996) Ellipse-specific direct least-square fitting. In: Proceedings of the international conference on image processing, pp 599–602

  • Ramamurthi K, Nandakumar K (1999) Characteristics of flow through small sharp-edged cylindrical orifices. Flow Meas Instrum 10(3):133–143

    Article  Google Scholar 

  • Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos Trans R Soc Lond 174:935–982

    Article  MATH  Google Scholar 

  • Rossi M, Segura R, Cierpka C, Kahler CJ (2012) On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp Fluids 52:1063–1075

    Article  Google Scholar 

  • Rumscheidt FD, Mason SG (1961) Particle motions in sheared suspensions. XII. Deformation and burst of fluid drops in shear and hyperbolic flow. J Colloid Sci 16:238–261

    Article  Google Scholar 

  • Stang M, Schuchmann HP, Schubert H (2001) Emulsification in High-Pressure Homogenizers. Eng Life Sci 4:151–157

    Article  Google Scholar 

  • Stone HA, Leal LG (1989) The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. J Fluid Mech 206:223–263

    Article  Google Scholar 

  • Stone HA, Bentley BJ, Leal LG (1986) An experimental-study of transient effects in the breakup of viscous drops. J Fluid Mech 173:131–158

    Article  Google Scholar 

  • Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc 29:501–523

    Article  Google Scholar 

  • Tcholakova S, Lesov I, Golemanov K, Denkov ND, Judat S, Engel R, Danner T (2011) Efficient emulsification of viscous oils at high drop volume fraction. Langmuir 27(24):14783–14796

    Article  Google Scholar 

  • Tesch S (2002) Charakterisieren mechanischer Emulgierverfahren: Herstellen und Stabilisieren von Tropfen als Teilschritte beim Formulieren von Emulsionen, Universität Karlsruhe (TH)

  • Tjahjadi M, Ottino JM (1991) Stretching and breakup of droplets in chaotic flows. J Fluid Mech 232:191–219

    Article  MathSciNet  Google Scholar 

  • Vankova N, Tcholakova S, Denkov ND, Ivanov IB, Vulchev VD, Danner T (2007) Emulsification in turbulent flow, 1. Mean and maximum drop diameters in inertial and viscous regimes. J Colloid Interface Sci 312:363–380

    Article  Google Scholar 

  • Walstra P (1983) Formation of emulsions, encyclopedia of emulsion technology. In: Becher P (ed) Encyclopedia of emulsion technology. Basic theory, vol 1. Marcel Dekker Inc, New York, pp 57–128

  • Wibel W (2009) Untersuchungen zu laminarer, transitioneller und turbulenter Strömung in rechteckigen Mikrokanälen, Dissertation

  • Windhab EJ, Dressler M, Feigl K, Fischer P, Megias-Alguacil D (2005) Emulsion processing-from single-drop deformation to design of complex processes and products. Chem Eng Sci 60:2101–2113

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. C. Kähler and his group (Universität der Bundeswehr München) for the useful discussions. The support in manufacturing the optical accessible orifices of P. Hoppen and the team in the workshops of the wbk Institute of Production Science (Karlsruher Institute of Technology) is gratefully acknowledged. The valuable experimental help by K. Melter is also deeply appreciated. This project is part of the JointLab IP3, a joint initiative of KIT and BASF. Financial support by the ministry of science, research and the arts of Baden-Württemberg (Az. 33-729.61-3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike P. Schuchmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelemen, K., Gepperth, S., Koch, R. et al. On the visualization of droplet deformation and breakup during high-pressure homogenization. Microfluid Nanofluid 19, 1139–1158 (2015). https://doi.org/10.1007/s10404-015-1631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1631-z

Keywords

Navigation