Skip to main content
Log in

A novel method to construct 3D electrodes at the sidewall of microfluidic channel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We report a simple, low-cost and novel method for constructing three-dimensional (3D) microelectrodes in microfluidic system by utilizing low melting point metal alloy. Three-dimensional electrodes have unique properties in application of cell lysis, electro-osmosis, electroporation and dielectrophoresis. The fabrication process involves conventional photolithography and sputtering techniques to fabricate planar electrodes, positioning bismuth (Bi) alloy microspheres at the sidewall of PDMS channel, plasma bonding and low temperature annealing to improve electrical connection between metal microspheres and planar electrodes. Compared to other fabrication methods for 3D electrodes, the presented one does not require rigorous experimental conditions, cumbersome processes and expensive equipments. Numerical analysis on electric field distribution with different electrode configurations was presented to verify the unique field distribution of arc-shaped electrodes. The application of 3D electrode configuration with high-conductive alloy microspheres was confirmed by particle manipulation based on dielectrophoresis. The proposed technique offers alternatives to construct 3D electrodes from 2D electrodes. More importantly, the simplicity of the fabrication process provides easy ways to fabricate electrodes fast with arc-shaped geometry at the sidewall of microchannel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cetin B, Kang Y, Wu Z, Li D (2009) Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Electrophoresis 30:766–772

    Article  Google Scholar 

  • Cheng I-F, Hou D, Chang H-C (2007) An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1:021503-1-021503-15

    Google Scholar 

  • Choi J-W, Rosset S, Niklaus M, Adleman JR, Shea H, Psaltis D (2010) 3-dimensional electrode patterning within a microfluidic channel using metal ion implantation. Lab Chip 10:783–788

    Article  Google Scholar 

  • Chunag C-H, Chen Y-C, Hsu Y-M, Huang H-S, Hsiao F-B, Wang C-H (2009) A DEP chip with arc-shape microelectrode arrays for the separation of different-size particles. Proceedings of the 2009 4th IEEE international conference on nano/micro engineered and molecular systems 5–8 Jan 2009, Shenzhen, China, pp 854–857

  • Gong X, Yi X, Xiao K, Li S, Kodzius R, Qin J, Wen W (2010) Wax-bonding 3D microfluidic chips. Lab Chip 10:2622–2627

    Article  Google Scholar 

  • Huang C–C, Bazant MZ, Thorsen T (2010) Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Lab Chip 10:80–85

    Article  Google Scholar 

  • Iliescu C, Lin G, Samper V, Tay FE (2005) Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J Micromech Microeng 15:494–500

    Article  Google Scholar 

  • Iliescu C, Tresset G, Xu G (2009) Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes. Biomicrofluidics 3:044104-1-044104-10

    Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Khoshmanesh K, Zhang C, Nahavandi S, Tovar-Lopez FJ, Baratchi S, Mitchell A, Kalantar-zadeh K (2010) Size based separation of microparticles using a dielectrophoretic activated system. J Appl Phys 108:034904-1-034904-8

    Google Scholar 

  • Lewpiriyawong N, Yang C (2012) AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes. Biomicrofluidics 6:012807

    Article  Google Scholar 

  • Lewpiriyawong N, Yang C, Lam YC (2010) Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31:2622–2631

    Article  Google Scholar 

  • Lewpiriyawong N, Kandaswamy K, Yang C, Ivanov V, Stocker R (2011) Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Anal Chem 83:9579–9585

    Article  Google Scholar 

  • Li M, Li S, Wu J, Wen W, Li W, Alici G (2012) A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer. Microfluid Nanofluid 12:751–760

    Article  Google Scholar 

  • Lu K-Y, Wo AM, Lo Y-J, Chen K-C, Lin C-M, Yang C-R (2006) Three dimensional electrode array for cell lysis via electroporation. Biosens Bioelectron 22:568–574

    Article  Google Scholar 

  • Ma W, Shi T, Tang Z, Liu S, Malik R, Zhang L (2011) High-throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three-dimensional microelectrode array. Electrophoresis 32:494–505

    Article  Google Scholar 

  • Mahalanabis M, Al-Muayad H, Kulinski MD, Altman D, Klapperich CM (2009) Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip. Lab Chip 9:2811–2817

    Article  Google Scholar 

  • Niu X, Peng S, Liu L, Wen W, Sheng P (2007) Characterizing and patterning of PDMS-based conducting composites. Adv Mater 19:2682–2686

    Article  Google Scholar 

  • Numthuam S, Kakegawaa T, Anadab T, Khademhosseinic A, Suzukia H, Fukuda J (2011) Synergistic effects of micro/nano modifications on electrodes for microfluidic electrochemical ELISA. Sens Actuators B 156:637–644

    Article  Google Scholar 

  • Park BY, Madou MJ (2005) 3-D electrode designs for flow-through dielectrophoretic systems. Electrophoresis 26:3745–3757

    Article  Google Scholar 

  • Park J, Kim B, Choi SK, Hong S, Lee SH, Lee K (2005) An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip 5:1264–1270

    Article  Google Scholar 

  • Pethig R (2010) Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811-1-022811-35

    Google Scholar 

  • Senousy YM, Harnett CK (2010) Fast three dimensional AC electro-osmotic pumps with nonphotolithographic electrode patterning. Biomicrofluidics 4:036501-1-036501-7

    Google Scholar 

  • Voldman J, Gray ML, Toner M, Schmidt MA (2002) A microfabrication-based dynamic array cytometer. Anal Chem 74:3984–3990

    Article  Google Scholar 

  • Wang L, Flanagan LA, Jeon NL, Monuki E, Lee AP (2007) Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip 7:1114–1120

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wu D, Qin J, Lin B (2008) Review electrophoretic separations on microfluidic chips. J Chromatogr A 1184:542–559

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Yu C, Vykoukal J, Vykoukal DM, Schwartz JA, Shi L, Gascoyne PRC (2005) A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. J Microelectromech Syst 14:480–487

    Article  Google Scholar 

  • Yu L, Shen Z, Mo J, Dong X, Qin J, Lin B (2007) Microfluidic chip-based cell electrophoresis with multipoint laser-induced fluorescence detection system. Electrophoresis 28:4741–4747

    Article  Google Scholar 

  • Zeng S, Pan X, Zhang Q, Lin B, Qin J (2011) Electrical control of individual droplet breaking and droplet contents extraction. Anal Chem 83:2083–2089

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Hong Kong RGC grant 604710 and 605411, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Li or Weijia Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Li, M., Hui, Y.S. et al. A novel method to construct 3D electrodes at the sidewall of microfluidic channel. Microfluid Nanofluid 14, 499–508 (2013). https://doi.org/10.1007/s10404-012-1068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1068-6

Keywords

Navigation