Skip to main content
Log in

Molecular dynamics simulation of nanoparticle diffusion in dense fluids

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This article deals with a molecular dynamics simulation of the diffusion of nanoparticles in dense gases and liquids using the Rudyak–Krasnolutskii nanoparticle–molecule potential. Interaction of molecules of the carrier fluid is described by the Lennard-Jones potential. The behavior of the nanoparticle velocity autocorrelation function is studied. It is shown by molecular dynamics simulation that the diffusion coefficient of small nanoparticles depends greatly on the nanoparticle material. Relations are obtained between the diffusion coefficient of nanoparticles and the nanoparticle radius and the temperature of the medium. These relations differ from the corresponding Einstein relation for Brownian particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Kato T, Kikuchi K, Achiba YJ (1993) Measurement of the self-diffusion coefficient of C60 in benzene-D6 using 13C pulsed-gradient spin echo. Phys Chem 97:10251–10253

    Article  Google Scholar 

  • McPhie MG, Daivis PJ, Snook IK (2006) Viscosity of a binary mixture: approach to the hydrodynamic limit. Phys Rev E 74:031201

    Article  Google Scholar 

  • Nuevo MJ, Morales JJ (1998) Mass dependence of isotope self-diffusion by molecular dynamics. Phys Rev E 51:2026–2032

    Article  Google Scholar 

  • Ould-Kaddour F, Levesque D (2007) Diffusion of nanoparticles in dense fluids. J Chem Phys 127:154514

    Article  Google Scholar 

  • Pozhar LA (2000) Structure and dynamics of nanofluids: theory and simulations to calculate viscosity. Phys Rev E 61:1432–1446

    Article  Google Scholar 

  • Rapaport DC (2005) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Google Scholar 

  • Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids. McGraw-Hill Book Company, New York

    Google Scholar 

  • Rudyak VYa, Krasnolutskii SL (1999) The interaction potential of dispersed particles with carrier gas molecules. In: Proceedings of the 21st international symposium on rarefied gas dynamics, vol 1. Cépadués-Éditions, Toulouse, pp 263–270

  • Rudyak VYa, Krasnolutskii SL (2001) Kinetic description of nanoparticle diffusion in rarefied gas. Dokl Phys 46:897–899

    Article  Google Scholar 

  • Rudyak VYa, Krasnolutskii SL (2002) Diffusion of nanoparticles in a rarefied gas. Tech Phys 47(7):807–813

    Article  Google Scholar 

  • Rudyak VYa, Krasnolutskii SL (2003) On the viscosity of rarefied gas suspensions containing nanoparticles. Dokl Phys 48:583–586

    Article  Google Scholar 

  • Rudyak VYa, Kharlamov GV, Belkin AA (2000) The velocity autocorrelation function of nanoparticles in a hard-sphere molecular system. Tech Phys Lett 26(7):553–556

    Article  Google Scholar 

  • Rudyak VYa, Kharlamov GV, Belkin AA (2001) Diffusion of nanoparticle and macromolecules in dense gases and liquids. High Temp 39(2):264–271

    Article  Google Scholar 

  • Rudyak VYa et al (2002) Methods of measuring the diffusion coefficient and sizes of nanoparticles in a rarefied gas. Dokl Phys 47(10):758–761

    Article  Google Scholar 

  • Rudyak VYa et al (2008a) Simulation of transport processes by the molecular dynamics method. Self-diffusion coefficient. High Temp 46(1):30–39

    Article  MathSciNet  Google Scholar 

  • Rudyak VYa, Krasnolutskii SL, Ivashchenko EN (2008b) Influence of the physical properties of the material of nanoparticles on their diffusion in rarefied gases. J Eng Phys Thermophys 81:520–524

    Article  Google Scholar 

  • Rudyak VYa, Dubtsov SN, Baklanov AM (2009) Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295–600 K at atmospheric pressure. J Aerosol Sci 40:833–843

    Article  Google Scholar 

  • Schofield P (1973) Computer simulation studies of the liquid state. Comput Phys Comm 5:17–23

    Article  Google Scholar 

  • Tuteja A, Mackay ME (2007) Breakdown of the continuum Stokes—Einstein relation for nanoparticle diffusion. Nano Lett 7(5):1276–1281

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Russian Foundation for Basic Research (grant no. 10-01-00074) and the Federal Special Program “Scientific and scientific-pedagogical personnel of innovative Russia in 2009–2013” (contracts nos. P230 and 14.740.11.0579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Ya. Rudyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudyak, V.Y., Krasnolutskii, S.L. & Ivanov, D.A. Molecular dynamics simulation of nanoparticle diffusion in dense fluids. Microfluid Nanofluid 11, 501–506 (2011). https://doi.org/10.1007/s10404-011-0815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0815-4

Keywords

Navigation