Skip to main content
Log in

Microfabricated micropallets for enhancement of biomolecular techniques

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We introduce microcarriers referred to as “micropallets” ranging in size from 25 μm to several 100 microns, fabricated using photoresist or other polymer materials. These small carrier structures may be used in static detection systems or for transporting attached biological or chemical samples through a microfluidic system. Micropallets may be encoded through the use of barcodes or other markings and engineered to optimally suit the cargo they carry. We demonstrate the use of micropallets in cell and antibody assays. Furthermore we demonstrate the ability to decode and manipulate micropallets in a flow-through system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56:267–287

    Article  Google Scholar 

  • Boone TD, Fan ZH, Hooper HH, Ricco AJ, Tan H, Williams SJ (2002) Plastic advances microfluidic devices. Anal Chem 74:78A–86A

    Article  Google Scholar 

  • Braeckmans K, DeSmedt SC, Leblans M, Pauwels R, Demeester J (2002) Encoding microcarriers: present and future technologies. Nat Rev Drug Discov 1:447–456

    Article  Google Scholar 

  • Braeckmans K, De Smedt SC, Leblans M, Roelant C, Pauwels, R, Demeester J (2003a) Scanning the code. Mod Drug Discov 28–32

  • Braeckmans K, De Smedt SC, Roelant C, Leblans M, Pauwels R, Demeester J (2003b) Encoding microcarriers by spatial selective photobleaching. Nature 2:169–173

    Article  Google Scholar 

  • Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  Google Scholar 

  • deMello AJ (2002) Plastic fantastic? Lab Chip 2:31N–36N

    Article  Google Scholar 

  • Dodge A, Fluri K, Verpoorte E, Rooij, NFd (2001) Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Anal Chem 73:3400–3409

    Article  Google Scholar 

  • Evans M, Sewter C, Hill E (2003) An encoded particle array tool for multiplex bioassays. Assay Drug Dev Technol 1:1–9

    Article  Google Scholar 

  • Finkel NH, Lou X, Wang C, He L (2004) Barcoding the microworld. Anal Chem 76:352A–359A

    Google Scholar 

  • Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR Jr (1997) Advanced multiplexed analysis with the FlowMetrix™ System. Clin Chem 43:1749–1756

    Google Scholar 

  • Gao X, Chan WCW, Nie S (2002) Quatum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7:532–537

    Article  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  Google Scholar 

  • Hoffmann D, O’Brien J, Brennan D, Loughran M (2007) Optically encoded silicon microbeads: detection and characterization in a microfluidic system. Sens Act B 122:653–658

    Article  Google Scholar 

  • Jiang W, Mardyani S, Fischer H, Chan CWC (2005) Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots. Chem Mater 18:872–878

    Article  Google Scholar 

  • Keating CD, Natan MJ (2003) Striped metal nanowires as building blocks and optical tags. Adv Mater 15(5):451–454

    Article  Google Scholar 

  • Keij JF, Steinkemp JA (1998) Flow cytometric characterization and classification of multiple dual-color fluorescent microspheres using fluorescence lifetime. Cytometry 33:318–323

    Article  Google Scholar 

  • Kelly RT, Pan T, Woolley AT (2005) Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Anal Chem 2:3536–3541

    Article  Google Scholar 

  • Kettman JR, Davies T, Chandler D, Oliver KG, Fulton RJ (1998) Classification and properties of 64 multiplexed microsphere sets. Cytometry 33:234–243

    Article  Google Scholar 

  • Kim J-S, Kang J-W, Kim J-J (2003) Simple and low cost fabrication of thermally stable polymetric multimode waveguides using a UV-curable epoxy. Jpn J Appl Phys 42:1277–1279

    Article  Google Scholar 

  • Lee K, LaBianca N, Rishton S, Zohlgharnain S, Gelorme J, Shaw J, Chang TH-P (1995) Micromachining applications for a high resolution ultra-thick photoresist. J Vac Sci Technol B 13:3012–3016

    Article  Google Scholar 

  • Marie R, Schmid S, Johansson A, Ejsing L, Nordström M, Häfliger D, Christensen CBV, Boisen A, Dufva M (2006) Immobilisation of DNA to polymerised SU-8 photoresist. Biosens Bioelectron 21:1327–1332

    Article  Google Scholar 

  • Nicewarner-Peña S.R., Freeman RG, Reiss BD, He L, Peña D.J., Walton ID, Cromer R, Keating CD, Natan MJ (2001) Submicrometer metallic barcodes. Science 294:137–141

    Article  Google Scholar 

  • Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5:113–117

    Article  Google Scholar 

  • Penn SG, He L, Natan MJ (2003) Nanoparticles for bioanalysis. Curr Opin Chem Biol 7:609–615

    Article  Google Scholar 

  • Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315:1393–1396

    Article  Google Scholar 

  • Ravkin I, Temov V, Nelson A, Zarowitz M, Hoopes M, Verhovsky Y, Ascue G, Goldbard S, Beske O, Bhagwat B, Marciniak H (2004) Multiplexed cell analysis on CellCardsTM for drug discovery Proc SPIE Int Soc Opt Eng 5328:18–29

    Google Scholar 

  • Reiss BD, Freeman RG, Walton ID, Norton SM, Smith PC, Stonas WG, Keating CD, Natan MJ (2002) Electrochemical synthesis and optical readout of striped metal rods with submicron features. J Electroanal Chem 522:95–103

    Article  Google Scholar 

  • Ruhmann R, Pfeiffer K, Falenski M, Reuther F, Engelke R, Grützner G (2002) SU-8—a high performance material for MEMS applications. Mstnews 45–46

  • Salazar GT, Wang Y, Young G, Bachman M, Sims CE, Li GP, Allbritton NA (2007) Micropallet arrays for the separation of single, adherent cells. Anal Chem 79:682–687

    Article  Google Scholar 

  • Sims CE, Allbritton NA (2007) Analysis of single mammalian cells on-chip. Lab Chip 7:423–440

    Article  Google Scholar 

  • Sims CE, Bachman M, Li GP, Allbritton NL (2007) Choosing one from the many: selection and sorting strategies for single adherent cells. Anal Bioanal Chem 387:5–8

    Article  Google Scholar 

  • So M-K, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    Article  Google Scholar 

  • Verpoorte E (2003) Beads and chips: new recipes for analysis. Lab Chip 3:60N–68N

    Article  Google Scholar 

  • Voskerician G, Shive MS, Shawgo RS, von Recum H, Anderson JM, Cima MJ, Langer R (2003) Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24:1959–1967

    Article  Google Scholar 

  • Walton ID, Norton SM, Balasingham A, He L, Oviso DF Jr, Gupta D, Raju PA, Natan MJ, Freeman RG (2002) Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy. Anal Chem 74:2240–2247

    Article  Google Scholar 

  • Wang J, Liu G, Rivas G (2003) Encoded beads for electrochemical identification. Anal Chem 75:4667–4671

    Article  Google Scholar 

  • Wang Y, Bachman M, Sims CE, Li GP, Allbritton NL (2006a) Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist. Langmuir 22:2719–2725

    Article  Google Scholar 

  • Wang Y, Sims CE, Marc P, Bachman M, Li GP, Allbritton NA (2006b) Micropatterning of living cells on a heterogeneously wetted surface. Langmuir 22:8257–8262

    Article  Google Scholar 

  • Wang Y, Young G, Bachman M, Sims CE, Li GP, Allbritton NA (2007) Collection and expansion of single cells and colonies released from a micropallet array. Anal Chem 79:2359–2366

    Article  Google Scholar 

  • Zhi Z-L, Morita Y, Hasan Q, Tamiya E (2003) Micromachining microcarrier-based biomolecular encoding for miniaturized and multiplexed immunoassay. Anal Chem 75:4125–4131

    Article  Google Scholar 

  • Zhi Z-L, Morita Y, Yamamura S, Tamiya E (2005) Micromachining microcarrier-based biomolecular encoding for miniaturized and multiplexed immunoassay. Chem Commun 75:2448–2450

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ruisheng Chang and the Integrated Nanosystem Research Facility for micropallet fabrication. We thank Nancy Allbritton and staff for training and the use of their lab facilities for cell culturing and imaging. Our sincere thanks to Nicholas Gunn for use of his SEM image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Jensen-McMullin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen-McMullin, C., Bachman, M. & Li, G.P. Microfabricated micropallets for enhancement of biomolecular techniques. Microfluid Nanofluid 5, 225–234 (2008). https://doi.org/10.1007/s10404-007-0240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0240-x

Keywords

Navigation